| |||
Реферат: Билеты по геометрии (11 класс)Билет № 3 1. Взаимное расположение прямой и плоскости в пространстве 2.Теорема: Объем прямой призмы равен произведению площади основания на
высоту. Проведем такую высоту ?АВС (ВD) кот. разделит этот ?на 2 ?. Поскольку ВВ1D разделяют данную призму на 2 призмы , основания кот является прямоугольный ?ABD и ВСD. Плэтому объем V1 и V2 соответственно равны SABD ·h и SВСD ·h. По св- ву 20 объемов V=V1+V2 т.е V= SABD ·h+ SВСD ·h= (SABD+ SВСD) h. Т.о. V=SАВС·h Д-во Возьмем произвольную прямую призму с высотой h и площадью основания S. Такую призму можно разбить на прямые треугольные призмы с высотой h. Выразим объем каждой треугольной призмы по формуле (1) и сложим эти объемы. Вынося за скобки общий множитель h, получим в скобках сумму площадей оснований треугольных призм, т. е. площадь S основания исходной призмы. Таким образом, объем исходной призмы равен произведению Sh. Теорема доказана. Рассмотрим случай , когда призмая является частью параллелепип-ида. Диогональное сечение делит параллелепипед на 2 равные треугольные призмы. Так как Sпол = 1//2 ab то S?=ab =>V?= Sh ч.т.д. Билет №5 ?. Сравним ( АН и наклон-ную AM: в прямоугольном ?АМН сторона АН — катет, а сторона AM - гипотенуза, поэтому АН из всех расстояний от т А до различных т пл ? наименьшим является расстояние до т H. Это расстояние, т. е: длина (, проведенного из т А к пл ? , называется расстоянием от т A до пл ? 2. Теорема. Объем цилиндра равен произведению площади основания на высоту. Билет № 6 1. Расстояние между скрещивающимися прямыми (формулировки, примеры) Расстояние между одной из скрещивающихся прямых и плоскостью , проходящей через другую прямую параллельную первой , называется расстояни6е между скрещивающимися прямыми. Если две прямые скрещиваются то через каждую из них проходит плоскость параллельная другой прямой , и при том только одна. 2 Теорема. Объем конуса равен одной трети произведения площади основания на высоту. Д-во Рассмотрим конус с объемом V, радиусом основания R, высо-той h и вершиной т О . Введем ось Ох (ОМ). Произвольное сечение конуса пл. , ( к оси Ох , является кругом с центром в т М1 пересе-чения этой пл. с осью Ох. Обозначим радиус через R1 ,а S сечения через S(х) , где х – абсцисса т М1 . Из подобия прямоугольных ? ОМ1А1 и ОМА=> что Применяя основную формулу для вычисления объемов тел при а=0, b=0, получим
Билет №7 1. Угол между скрещивающимися прямыми 2. Площадь боковой поверхности цилиндра. 1. Пусть АВ и СD – скрещивающиеся прямые . Возьмем произвольную т. М1 пространства и проведем через нее прямые А1В1 и С1D1 , соответственно параллельн АВ и СD Если ? между прямыми А1В1 и С1D1 =?, то будем говорить , что ? между скрещивающимися прямыми АВ и СD=?. Докажем теперь, что ? между прямыми не зависит от выбора т. М1 . Действительно , возьмем любую т. М2 и проведем прямые А2В2и С2D2 соответственно парал. АВ и СD Т.к А1В1? А2D2 , С1D1? C2D2 , то стороны углов с вершинами в т.М1и М2 попарно сонаправлены ( ?А1М1С1 и ?А2М2С2 , ?А1М1D1 и?А2М2D2 ) потому эти ? равны , ? что ? между А2В2и С2D2 так же =?. В качестве т М можно взять любую точку на одной из скрещивающихся прямых . Например на СD отметить т М и через нее провести А'B' параллельные АВ .Угол между прямыми A'B'и CD= ? 2. Терема: S боковой поверхности цилиндра равна произведению длинны окружности основания на высоту Разрежем боковую поверхность по образующей АВ и развернем т.о , что все образующие оказались в одной плоскости ? . В результате в пл ? получится прямоугольник АВВ'А' . Стороны АВ и А'В' –два края разреза боковой поверхности цилиндра по образующей АВ . Это прямоугольник называется разверткой боковой поверхности цилиндра . основание АА' прямоугольника является разверткой окружности основания цилиндра , поэтому АА'=2?r , AB-h, где г- радиус цилиндра , h- его высота . за S бок цилиндра принято считать S её развертки . Т.к S прямоугольника АВВ'А'= АА'•ВА = 2?r•h то, для вычисления S бок цилиндра радиуса к и высоты h формула S бок=2?rh Билет № 9 1. Угол между плоскостями (формулировка, примеры) 2. Возьмем 2 произвольных вектора a и b .Отложим от какой-нибудь т А вектор Это правило сложения векторов называется правилом треугольника. (по этому же правилу складываются и коллинеарные векторы , хотя при их сложении треугольника не получается) Сумма a+b не зависит от выбора т А, от которой при сложении откладывается вектор а. (если например заменить т А на т А1 то вектор АС заменится равным ему вектором А1С1Привило треугольника можно сформулировать и в другой форме: для любых точек А,В,и С имеет место равенство АВ+ВС=АС. Для сложения 2-ух неколлинеарных векторов можно пользоваться так же правилом параллелограмма. Для любых векторов а, b и с справедливы равенства: a+b=b+a (перемести- тельный з-н.);(a+b)+с=а+(b+с)(сочетательный з-н). Два нулевых вектора называются противоположными, если их длины равны нулю и они противоположно направлены.Вектором проти- оположным нулевому вектору , считается нулевой вектор. Вектр АВ является проти-воположным вектру ВА Билет № 10 1. Двугранный угол. Линейный угол двугранного угла.( формулировки , примеры) 2. Умножение вектора на число . Св-ва произведения вектора на число. У двугранного угла 2 грани, отсюда и название. Прямая а – общая граница полуплоскостей- называется ребром двугранного угла. Для измерения двугранного угла отметим на ребре какую-нибудь т. и в каждой грани из этой точки проведем перпендикуляр к ребру. Образованный этими лучами угол называется линейный угол двугранного угла. (( АОВ ) ОА(CD CD(ОВ, то плоскость АОВ ( к прямой СD. Двугранный угол имеет бесконечное множество линейных углов и они равны друг другу. Рассмотрим 2 линейных (АОВ и (А1О1В1 . Лучи ОА и О1А1 лежат в одной грани (к ОО1, поэтому они сонаправлены. Точно так же сонаправлены ОВ и О1В1=> ( А1О1В1 =(АОВ. Градусной мерой двугранного угла называется градусная мера его линейного угла . Он может быть прямым , острым, тупым ( 90(, 90() 2. Произведение ненулвого вектора а на число k называется такой вектор b , длинна которого равно (k(((a( , причем вектор a и b сонаправлены при k? 0 и противоположно направлены при k0 при а(0 20.ab=ba(переместительный з-н) 30.(a+b)c=ac+bc(распределительный з-н) 40.k(ab)=(ka)b (сочетательный з-н) Утверждения 1?-4?относятся и к планиметрии Нетрудно док-ть , что распределительный з-н имеет место для любого числа слагаемых( (a+b+c)d=ad+bd+cd.) Билет № 12
1.Если боковые ребра перпендикулярны основаниям, то призма нвзывается
прямой, в противном случае наклонной. Высота прямой призмы равна ее
боковому ребру. 2. Теорема. Через прямую и не лежащую на ней точку проходит плоскость, и
приом только одна . Билет № 13 1. Параллелепипед. Прямоугольный параллелепипед(формулировка примеры) A1B1C1D1.Его основаниями служат прямоугольники ABCD и A1B1C1D1 a боковые ребра АА1, ВВ1, СС1 и DD1 ( к основаниям. Отсюда=>, что АА1(АВ, т. е. боковая граyь АА1В1В — прямоуголь-ник. To же самое можно сказать и об остальных боковых гранях. Та-ким образом, мы обосновали следующее свойство прямоугольного параллелепипеда: 1°. В прямоугольном параллелепипеде все шесть граней прямоугольники. Полупл, в кот расположены смежные грани парал- да, образуют двугранные углы, кот называются двугранными углами
параллелепипеда. 2. Теорема: S боковой поверхности прямой призмы равна произведению
периметра основания на высоту призмы. S=AB•h+BC•h+CA•h=h(AB+BC+CA)=Ph Билет № 14 1. Пирамида(формулировка , примеры) 2. Существование прямой, параллельной данной прямой и проходящей через данную точку. Многоугольник, составленный из n –угольника А1А2…Аn и n тре-угольников , называется пирамидой. Многоугольник А1А2…Аn назы-вается основанием, а треугольники- боковыми гранями пирамиды. Т.Р называется вершиной пирамиды , а отрезки РА1,РА2, …, РАn – её боковыми ребрами . Пирамиду с основанием А1А2,…Аn и вершиной Р обозначают так: РА1А2…Аn –и называют n –угольной пирамидой. Треугольная пирамида называется тетраэдр. Перпендикуляр , проведенный из вершины пирамиды к плоскости основания , называют высотой пирамиды (РН) Площадью полной поверхности пирамиды называют сумму площадей её граней , а площадью боковой поверх-ности – сумму площадей её боковых граней 2. Т е о р е м а. Через любдю точку пространства, не лежащую на данной
прямой, проходит прямая, параллелькая данной, и притом только одна. ?. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с т М и прямой а, т. е. должна лежать в плоскости ?. Ho в плоскости ?, как известно из курса планиметрии, через т М проходит прямая, параллельная прямой а, и притом только одна. Эта прямая обозначена буквой b. Итак, b — единственная прямая, проходящая через т М параллельно прямой а. Теорема доказана. Билет № 15 1. Цилиндр (формулировки и примеры) 2. Признак параллельных прямых. L1. Тело ограниченное цилиндрической поверхностью и двумя кругами с границами L и L1 , называется цилиндром. Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги - основаниями цилиндра . Образующие цилиндрической поверхности называются образующими цилиндра , прямая ОО1- осью цилиндра. Цилиндр может быть получен вращением прямоугольника вокруг одной из его сторон. Сечение цилиндра , проходящее через ось , представляет собой прямоугольник , две стороны которого образующие , а 2 другие –диаметры оснований цилиндра , такое сечение называется осевым. Если секущая плоскость ? к оси цилиндра , то сечение является кругом. Цилиндры так же могут быть и наклонными или иметь в своем основании параболу . Параллельность прямых а и b обозначается так: а||b. Докажем теорему о
параллельных прямых. ?. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с т М и прямой а, т. е. должна лежать в плоскости ?. Ho в плоскости ?, как известно из курса планиметрии, через т М проходит прямая, параллельная прямой а, и притом только одна. Эта прямая обозначена буквой b. Итак, b — единственная прямая, проходящая через т М параллельно прямой а. Теорема доказана. Билет №16 1. Конус (формулировки и примеры) L, называется конусом .Коническая по-верх называется боковой поверхностью конуса, а круг - снованием конуса . Т.Р называется вершиной конуса , а образующие конической поверхности – образующими конуса. Все образующие равны друг другу . ОР , прохо-дящая через центр основания и вершину , называется Осью конуса . Ось конуса ? к плоскости основания. Отрезок ОР называется высотой конуса. Конус можно получить и вращением прямоуголь-ным треугольником вокруг одного из его катетов. При этом боковая поверхность образуется с помо-щью гипотенузы. Рассмотрим сечения конуса. Если секущая ось проходит через ось , то сечение пред-ставляет собой треугольник , и называется осевым сечением. Если секущая плоскость ? к оси ОР конуса, о сечене пред-ставляет собой круг с центром в т.О1 , расположенным на оси конуса. R1 этого круга равен РО1/РО r , где r- радиус основания конуса , что легко усмотреть из подобия ?РОМ??РО1М1 2.Определение. Прямая и плоскость называются параллельными, если они не
имеют общих точек. Билет № 17 1. Сфера, шар( формулировки, примеры) 2. Признак параллельности плоскостей. Данная точка называется центром сферы (т О), а данное расстояние — радиусом сферы. Радиус сферы часто обозначают буквой R Люб-ой отрезок, соединяющий центр и какую-нибудь точку сферы, также называется радиусом сферы.Отрезок, соединяющий две точки сферы и проходящий через ее центр, называется диаметром сферы. Очеви-дно, диаметр сферы равен 2R Отметим, что сфера может быть полу-чена вращением полуокружности вокруг ее диаметра Тело, ограни-ченное сферой, называется шаром. Центр, радиус и диаметр сферы называются также центром, радиусом и диаметром шара. Очевидно, шар радиуса R с центром О содержит все точки пространства, кот. Расположены от точки О на расстоянии, не превышающем H (вклю-чая и точку О), и не содержит других точек. 2.Теорема. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, другой плоскости, то эти плоскости праллельны. Д-во. Рассмотрим две плоскости ? и ?. В плоскости ? лежат пересека-ющиеся в точке М прямые a и b, а в плоскости ? — прямые a1 и b, причем a||a1 и b||b1. Докажвм, что a||b. Прежде всего отметим, что по признаку параллельности прямой и плоскости a||? и b||?. Допустим, что плоскости ? и ? не параллельны. Тогда они пересекаются по некоторой прямой с. Мы получили, что плоскость a проходит через прямую а, па- раллельную плоскости ?, и пересекает плоскость по прямой с. Отсюда следует, что a||с. Но плоскость a проходит также через прямую b, параллельную плоскости ?. Поэтому b||c. Т.о, через т М проходят две прямые a и b, параллельные прямой с. Но это невозможно, т.к по теореме о параллельных прямых через точку М проходит только одна прямая, параллельная прямой с. Значит, наше допущение неверно и ?|| ?. Теорема доказана. Билет № 18 1.Формула прямоугольногопараллелепипеда. (формулировка и пример) 2. Определение. Прямая называется перпендикулярной к плоскости , если она перпендикулярна к любой прямой , лежащей в этой плоскости. Теорема. Если одна из 2-ух параллельных прямых перпендикуляр- на к плоскости, то и другая прямая перпендикулярна к этой плос-кости. Д-во. Рассмотрим 2 |а и а1 и пл ?, такую, что а(?. Докажем, что и а1(?.. проведем какую-нибудь прямую х в пл ?. Так как а(?, то а(х. По лемме о перпендикулярности 2-ух параллельных прямых к третьей а1(х. Т.о. прямая а1 ( к любой прямой , лежащей в пл ( т.е а1(?. Теорема. Если 2 прямые перпендикулярны к плоскости , то они параллельны. Билет №20
2.Теорема. Прямая проведенная в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной. Д-во. Дана пл ? и перпендикуляр АН , АМ- наклонная, а- прямая, проведенная в пл ? через т м ( к проекции НМ наклонной. Докажем , что а (АМ. Рассотрим пл АМН. Пр.а (к этой пл, т.к она ( к 2-ум пересекающимся прямым АН и МН(а ( НМ по условию и а (АН, т.к. АН( ?). Отсюда =>, что пр а ( к любой прямой , лежащей в пл АМН, в частности а(АМ
|
|