1. • Методы решения уравнений в странах древнего мира
  2. • О курсе "Элементы теории Галуа"
  3. • Курсовая: Линейные диофантовы уравнения
  4. • Диспут и формула Кардано
  5. • Решение дифференциальных уравнений 1 порядка методом Эйлера
  6. • Построение приближенного решения нелинейного уравнения ...
  7. • Курсовая: Приближённые методы решения алгебраического уравнения
  8. • Решение уравнений в целых числах
  9. • Метод решения уравнений Ньютона - Рафсона
  10. • Составление и решение нестандартных уравнений ...
  11. • Нестандартные методы решения тригонометрических уравнений ...
  12. • Геометрическая алгебра: машина времени
  13. • Курсовая: Методы решения уравнений, содержащих параметр
  14. • Авторский материал: Применение свойств функций для решения уравнений
  15. • Решение нелинейного уравнения методом касательных
  16. • Решение иррациональных уравнений
  17. • Приближённые методы решения алгебраического уравнения
  18. • Курсовая: Приближённые методы решения алгебраического уравнения
  19. • Применение графиков в решении уравнений

Реферат: Методы решения уравнений в странах древнего мира

Методы решения уравнений в странах древнего мира.

История алгебры уходит своими корнями в древние времена. Задачи, связанные с уравнениями, решались ещё в Древнем Египте и Вавилоне. Теория уравнений интересовала и интересует математиков всех времён и народов.

В Древнем Египте и Вавилоне использовался метод ложного положения
(«фальфивое правило»)

Уравнение первой степени с одним неизвестным можно привести всегда к виду ах + Ь == с, в котором а, Ь, с — целые числа. По правилам арифметических действий ах = с — b,
[pic]
Если Ь > с, то с — b число отрицательное. Отрицательные числа были египтянам и многим другим более поздним народам неизвестны (равноправно с положительными числами их стали употреблять в математике только в семнадцатом веке).
Для решения задач, которые мы теперь решаем уравнениями первой степени, был изобретен метод ложного положения.
В папирусе Ахмеса 15 задач решается этим методом. Решение первой из них позволяет понять, как рассуждал автор.
Египтяне имели особый знак для обозначения неизвестного числа, который до недавнего прошлого читали «хау» и переводили словом «куча» («куча» или
«неизвестное количество» единиц). Теперь читают немного менее неточно:
«ага». bqt задача № 24 сборника Ахмеса:
«Куча. Ее седьмая часть ('подразумевается: «дают в сумме») 19. Найти кучу».
Запись задачи нашими знаками:

[pic]
Решение Ахмеса может быть представлено в наших символах в следующих четырех столбцах:
[pic]
Во многих задачах в начале или в конце встречаются слова: «Делай как делается», другими словами: «Делай, как люди делают».
Смысл решения Ахмеса легко понять.
Делается предположение, что. куча есть 7; тогда [pic] ее часть есть 1.
Это записано в первом столбце.

Во втором столбце записано, что при предположении х=7 куча и ее [pic] часть дали бы 8 вместо 19. Удвоение предположения дает 16. Автор, в уме очевидно, прикидывает, что дальше удваивать предположение нельзя, так как тогда получится больше 19. Он записывает 16, ставит перед числом две точки для обозначения удвоения первоначального предположения и отмечает значком
(у нас — звездочкой) результат; для получения в сумме 19 первоначальное предположение надо умножить -на 2 с некоторым добавлением, так как для получения точного результата, 19, не хватает еще 19—16=3. Ахмес находит
[pic] от 8, получает 4. Так как это больше нехватки 3, то на [pic] предположение умножить нельзя. Но [pic] от 8 есть 2, [pic] от восьми 1.
Ахмес видит, что [pic] и [pic] первоначального результата дают точно те 3 единицы, которых не хватало. Отметив [pic] и [pic] значками, Ахмес убедился, что первоначальное предположение для кучи (7) надо помножить на
[pic]
Умножение числа 7 на смешанное число [pic] Ахмес заменяет умножением смешанного числа [pic] на 7. В третьем столбце выписаны: [pic] часть искомой кучи есть [pic], удвоенное это число: [pic] и учетверенное: [pic].
Сумма этих трех чисел, равная числу [pic], есть произведение первоначального предположения 7 на [pic].
Итак, куча равна [pic].
В последнем столбце Ахмес делает проверку, складывая полученное значение для кучи [pic] и его [pic] части [pic]. В сумме получается 19, и решение заканчивается обычным для автора заключением: «Будет хорошо».
Способ решения, примененный Ахмесом, называется методом одного ложного положения. При помощи этого метода решаются уравнения вида ах == b. Его применяли как египтяне, так и вавилоняне.
У разных народов применялся метод двух ложных положений. Арабами этот метод был механизирован и получил ту форму, в которой он перешел в учебники европейских народов, в том числе в «Арифметику» Магницкого. Магницкий называет способ решения «фальшивым правилом» и пишет о части своей книги, излагающей этот метод:

Зело бо хитра есть сия часть,

Яко можеши ею все класть (вычислить. — И. Д.)

Не токмо что есть во гражданстве,

Но и высших наук в пространстве,

Яже числятся в сфере неба,

Якоже мудрым есть потреба.

Содержание стихов Магницкого можно вкратце передать так: эта часть арифметики весьма хитрая. При помощи ее можно вычислить не только то, что понадобится в житейской практике, но она решает и вопросы «высшие», которые встают перед «мудрыми».
Магницкий пользуется «фальшивым правилом» в форме, какую ему придали арабы, называя его «арифметикой двух ошибок» или «методой весов».

Квадратные уравнения в Древнем

Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

[pic]
Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.
Несмотря на высокий уровень развития алгебры в Вавилоне, • в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

. Как составлял и решал Диофант квадратные уравнения ,

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.
При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.
Вот, к примеру, одна из его задач.

«Найти два числа, зная, что их сумма равна 20, а произведение — 96».
Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х, другое же меньше, т. е. 10 — х. Разность между ними
2х. Отсюда уравнение

[pic] или же
[pic]

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = —2 для
Диофанта не существует, так как греческая математика знала только положительные числа.
Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения
[pic]
Ясно, что, выбирая в качестве неизвестного полу разность искомых чисел,
Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

Квадратные уравнения в Индии.
Задачи на уравнения встречаются уже в астрономическом трактате
«Ариабхаттаим», составленном в 449 г. индийским математиком и астрономом
Арибхаттой. Но это уже раннее средневековье.
В Алгебраическом трактате ал-Хорезми даётся классификация линейных и квадратных уравнений.
Индий учёные знали решения неопределённых уравнений в целых числах (в том числе и в отрицательных, чего сам Диофант избегал).

Формула решений квадратного уравнения.

Греческий математик Герон (I или II век нашего летоисчисления) вывел формулу для решения квадратного равнения ax2 + bx = c умножением всех членов на а и прибавлением к обеим половинам уравнения [pic] :

[pic]
В индии пришли к более простому способу вывода, который встречается в школьных учебниках: они умножали на 4a и к обеим половинам по b2. Это даёт:

[pic]

Индийские математики часто давали задачи в стихах.

Задача о лотосе.

Над озером тихим, с полмеры над водой,

Был виден лотоса цвет.

Он рос одиноко, и ветер волной

Нагнул его в сторону – и уж нет

Цветка над водой.

Нашёл его глаз рыбака

В двух мерах от места, где рос.

Сколько озера здесь вода глубока?

Тебе предложу я вопрос.

Ответ:[pic]

Из истории решения системы уравнений, содержащей одно уравнение второй степени и одно линейное
В древневавилонских текстах, написанных в III—II тысячелетиях до н. э., содержится немало задач, решаемых с помощью составления систем уравнений, в которые входят и уравнения второй степени. Вот одна из них.
. «Площади двух своих квадратов я сложил: [pic].Сторона второго квадрата равна [pic] стороны первого и еще 5».
Соответствующая система уравнений в современной записи имеет вид:

[pic]
Для решения системы (1) вавилонский автор возводит во втором уравнении у в квадрат и согласно формуле квадрата суммы, которая ему, видимо, была известна, получает:

[pic]
Подставляя это значение у в первое из системы уравнений (1), автор приходит к квадратному уравнению:

[pic]
Решая это уравнение по правилу, применяемому нами в настоящее время, автор находит х, после чего определяет у. Итак, хотя вавилоняне и не имели алгебраической символики, они решали задачи алгебраическим методом.
Диофант, который не имел обозначений для многих неизвестных, прилагал немало усилий для выбора неизвестного таким образом, чтобы свести решение системы к решению одного уравнения. Вот один пример из его «Арифметики».
Задача 21. «Найти два числа, зная, что их сумма равна 20, а сумма их квадратов — 208».
Эту задачу мы решили бы путем составления системы уравнений:

[pic]

Диофант же, выбирая в качестве неизвестного половину разности искомых чисел, получает (в современных обозначениях):

[pic]

Складывая эти уравнения, а затем вычитая одно из другого (все это Диофант производит устно), получаем

x = 2 + 10; у = 10 —2.

Далее, х2 + у2 = (г + lO)2 + (10 — г)2 == 2z2 + 200.
Таким образом,

2z2 + 200 = 208, откуда z = 2; х = 2 + 10 = 12; у = 10 — 2 = 8.

Диофантовы уравнения.

Задача Диофанта №80 (Из II книги его «Арифметики»)

Найти 2 таких числа, чтобы сумма квадрата каждого из них с другим искомым числом дала полный квадрат,

Решение Диофанта
Пусть первое число (I) будет s. Чтобы квадрат его •при прибавлении второго числа дал квадрат, второе число должно быть 2s + 1, так как в таком случае выполняется требование задачи: квадрат первого числа. сложенный со вторым, дает s2 + 2s + 1, то есть полный квадрат (s + 1)2.

Квадрат второго числа, сложенный с первым, должен также дать квадрат, то есть число (2s + I)2 + s, равное

4s2 + 5s + 1 == t2

Положим, что t = 2s — 2; тогда t2 = 4s2 — 8s + 4. Это выражение должно равняться 4s2 + 5s + 1. Итак, должно быть:

4s2 — 8s + 4 == 4s2 + 5s + l откуда s=[pic]
Значит, задаче удовлетворяют числа:
[pic].


Проверка;

[pic]
Почему Диофант делает предположение, что t==2s—2, он не объясняет. Во всех своих задачах (в дошедших до нас шести книгах его их 189) он делает то или другое предположение, не давая никакого обоснования.
Вообще содержание 6 книг таково:
В «Арифметике» 189 задач, каждая снабжена одним или несколькими решениями.
Задачи ставятся в общем виде, затем берутся конкретные значения входящих в нее величин и даются решения.
Задачи книги I в большинстве определенные. В ней имеются и такие, которые решаются с помощью систем двух уравнений с двумя неизвестными, эквивалентных квадратному уравнению. Для его разрешимости Диофант выдвигает условие, чтобы дискриминант был полным квадратом. Так, задача 30— найти таких два числа, чтобы их разность и произведение были заданными числами,— приводится к системе

х — у = а, х = b.

Диофант выдвигает «условие формирования»: требуется, чтобы учетверенное произведение чисел, сложенное с квадратом разности их, было квадратом, т. е. 4b + а2 = с2.
В книге II решаются задачи, связанные с неопределенными уравнениями и системами таких уравнений с 2, 3, 4, 5, 6 неизвестными степени не выше второй.
Диофант применяет различные приемы. Пусть необходимо решить неопределенное уравнение второй степени с двумя неизвестными f2 (х, у) ==0.
Если у него есть рациональное решение (x0, y0), то Диофант вводит подстановку x = x0 + t, y = y0 + kt, в которой k рационально. После этого основное уравнение преобразуется в квадратное относительно t, у которого свободный член f2 ( x0, у0) = 0. Из уравнения получается t1 == 0 (это значение Диофант отбрасывает), t2 — рациональное число. Тогда подстановка дает рациональные х и у.
В случае, когда задача приводилась к уравнению у2 = ax2 + bx + с, очевидно рациональное решение x0 = О,y0=±C. Подстановка Диофанта выглядит так: x = t, y = kt ± c

Другим методом при решении задач книги II Диофант пользовался, когда они приводили к уравнению у2 == = a2x2 + bx + с. Он делал подстановку

x= t,

y = at + k, после чего х и у выражались рационально через параметр k:
[pic]
Диофант, по существу, применял теорему, состоящую в том,; что если неопределенное уравнение имеет хотя бы одно рациональное решение, то таких решений будет бесчисленное множество, причем значения х и у могут быть представлены в виде рациональных функций некоторого параметра»

В книге II есть задачи, решаемые с помощью «двойного неравенства», т. е. системы ах + b = и2, сх + d == v2.
Диофант рассматривает случай а = с, но впоследствии пишет, что метод можно применить и при а : с = т2, Когда а == с, Диофант почленным вычитанием одного равенства из другого получает и2 —и2 = b — d. Затем разность b — d раскладывается на множители b — d = п1 и приравнивает и + v
= I, и — v = п, после чего находит и = (I + п)/2, v = (I - n)/2, х - (l2 + п2}/4a - {b + d)/2a.

Если задача сводится к системе из двух или трех уравнений второй степени, то Диофант находит такие рациональные выражения неизвестных через одно неизвестное и параметры, при которых все уравнения, кроме одного, обращаются в тождества. Из оставшегося уравнения он выражает основное неизвестное через параметры, а затем находит и другие неизвестные.

Методы, разработанные в книге II, Диофант применяет к более трудным задачам книги III, связанным с системами трех, четырех и большего числа уравнений степени не выше второй. Он, кроме того, до формального решения задач проводит исследования и находит условия, которым должны удовлетворять параметры, чтобы решения существовали.

В книге IV встречаются определенные и неопределенные уравнения третьей и более высоких степеней. Здесь дело обстоит значительно сложнее, потому что, вообще говоря, неизвестные невозможно выразить как рациональные функции одного параметра. Но, как и раньше, если известны одна или две рациональные точки кубической кривой fз (х, у) == 0, то можно найти и другие точки.
Диофант при решении задач книги IV применяет новые методы»

Книга V содержит наиболее сложные задачи; некоторые из них решаются с помощью уравнений третьей и четвертой степеней от трех и более неизвестных.
Есть и такие, в которых требуется разложить данное целое число на сумму двух, трех или четырех квадратов, причем эти квадраты должны удовлетворить определенным неравенствам.,
При решении задач Диофант дважды рассматривает уравнение Пелля ax2 + 1 = у2.
Задачи книги VI касаются прямоугольных треугольников с рациональными сторонами. К условию х2 + у2 == z2 в них добавляются еще условия относительно площадей, периметров, сторон треугольников.
В книге VI доказывается, что если уравнение ax2 + b == у2 имеет хотя бы одно рациональное решение, то их будет бесчисленное множество. Для решения задач книги VI Диофант применяет все употребляемые им способы.
Кстати, в одном из древних рукописных сборников задач в стихах жизнь
Диофанта описывается в виде следующей алгебраиче-юй загадки, представляющей надгробную надпись на его могиле

Прах Диофанта гробница покоит; дивись ей—и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком.

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругою он обручился.

С нею пять лет проведя, сына дождался мудрец;

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Задача-загадка сводится к составлению и решению уравнения:

[pic] откуда х = 84 = вот сколько лет жил Диофант.

Неопределённое уравнение x2 + y2 = z2
Такое неопределённое уравнение исследовали пиффагорийцы, целые решения которого поэтому называют «пифагоровыми тройками», они нашли бесконечно много таких троек, имеющих вид:
[pic]

Кубические уравнения
Более систематическое исследование задач, эквивалентных кубическим уравнениям, относится только к эпохе эллинизма. Архимед в сочинении «О шаре и цилиндре» (книга II, предложение 4) свел задачу о рассечении шара плоскостью на два сегмента, объемы которых имели бы заданное отношение т : п (т > п), к нахождению высоты х большего сегмента из пропорции

[pic]

(1)

где а — радиус шара.
Архимед обобщает задачу: рассечь заданный отрезок а на две части х и а—х так, чтобы

(а — х) : с = S : х2, (2)

где с и S — заданные отрезок и площадь.
Заметив, что при такой общей постановке задача не всегда разрешима
(имеются в виду только положительные действительные решения), Архимед приступает к ее исследованию с тем, чтобы наложить ограничения на с и S. Он говорит, что изложит полное решение задачи «в конце», однако соответствующее место не сохранилось. Жившие на столетие позже Архимеда греческие геометры Диокл и Дионисодор уже не знали его. Они предложили собственные, гораздо более сложные решения, но никто из них не сумел провести анализ общего случая.

Только в VI в. н. э. комментатор Архимеда Евтокий нашел утраченное место. Архимед решает задачу с помощью двух конических сечений:
Параболы

[pic]

(3) и гиперболы

[pic]

(4)


(здесь положено S = pb). Оба уравнения легко получить из пропорции (2).
Для выяснения необходимых условий Архимед переходит от пропорции (2) к кубическому уравнению x2(a-x) =
Sc (5) которое он выражает словесно как соотношение между объемами. Ясно, что уравнение (5) может иметь положительные корни, если

[pic]

Итак, проблема сводится к нахождению экстремума х2 (а — х).

Оставим пока в стороне вопрос о методе экстремумов Архимеда, мы вернемся к этому, когда будем говорить об инфинитезимальных методах древних. Скажем только, что Архимед полностью исследовал условия существования положительных вещественных корней уравнения (5), а именно:

1) если Sc < 43/27, то на участке (0, а) имеются два таких корня;

2) если Sc = 4aз/27, то имеется один корень (как сказали бы мы,— двукратный);

3) если Sc > 4aз/27, то корня нет.

Здесь 4а3/27 есть максимум х2 (а — х), достигаемый при х = 2а/3. В конце письма, предпосланного книге «О коноидах и сфероидах» (греки называли сфероидами эллипсоиды вращения, прямоугольными коноидами — параболоиды вращения, а тупоугольными коноидами — полости двуполостных гиперболоидов вращения), Архимед пишет, что с помощью доказанных в книге теорем можно решить ряд задач, как, например: от данного сфероида или коноида отсечь сегмент плоскостью, проведенной параллельно заданной, так, чтобы отсеченный сегмент был равен данному конусу, цилиндру или шару. Перечисленные задачи, так же как и задачи о делении шара, сводятся к кубическим уравнениям, причем в случае тупоугольного коноида уравнение будет иметь вид x2(a + x)=Sc

Из текста Архимеда можно заключить, что он проанализировал и решил это уравнение. Таким образом, Архимед рассмотрел кубические уравнения вида х3 + ax + b = 0 при различных значениях a и b и дал метод их решения. Однако исследование кубических уравнений оставалось для греков трудной задачей, с которой, в ее общем виде никто, кроме Архимеда, не мог справиться. Решение отдельных задач, эквивалентных кубическим уравнениям, греческие математики получали с помощью нового геометрического аппарата конических сечений. Этот метод впоследствии восприняли математики стран ислама, которые сделали попытку провести полный анализ всех уравнений третьей степени.
Но еще до этого, и притом греческими математиками, был сделан новый решительный шаг в развитии алгебры: геометрическая оболочка была сброшена, и началось построение буквенной алгебры на основе арифметики. Это произошло в первые века нашей эры.

Литература:
«История математики в древности» Э. Кольман.
«Решение уравнений в целых числах» Гельфонд.
«В мире уравнений» В.А.Никифоровский.
«История математики в школе» Г.И.Глейзер.
«Рассказы о старой и новой алгебре» И.Депман.
«Пифагор: рассказы о математике» Чистаков.
«Краткий очерк истории математики» Стройк Д.Я.
«Очерки по истории математики» Болгарский Б.В.
«История математики» (энциклопедия) под редакцией Юшкевича.

«Энциклопедический словарь юного математика» под редакцией Гнеденко.

-----------------------
(2)_

(1)

©2007—2016 Пуск!by | По вопросам сотрудничества обращайтесь в contextus@mail.ru