1. • Чарльз Гудийр
  2. • Крашение натурального шелка бромакриламидными красителями
  3. • Структура и адгезионные свойства отверждённых эпоксидных смол
  4. • Приложения производной
  5. • Опыт практического применения нового гестагенного ...
  6. • Курсовая: Применение производной и интеграла для решения уравнений ...
  7. • Производная и ее применение в алгебре, геометрии, физике
  8. • Производная и ее применение в алгебре, геометрии, физике
  9. • Опыт практического применения нового гестагенного ...
  10. • Производная в курсе алгебры средней школы
  11. • Практическое применение Гамавита для повышения ...
  12. • Химико-токсикологический анализ производных фенотиазина
  13. • История открытия и практическое применение электромагнетизма
  14. • Система директ-костинг и ее практическое применение в анализе
  15. • Женская проза
  16. • Авторский материал: ... типов языковых значений в производных словах, ...
  17. • Лекции по Математическому анализу

Реферат: Практическое применение производной

Южно-Сахалинский Государственный Университет

Кафедра математики

Курсовая работа

Тема: Практическое применение производной

Автор: Меркулов М. Ю.
Курс: 3
Преподаватель: Лихачева О. Н.
Оценка:

Южно-Сахалинск

2002г

Введение

В данной работе я рассмотрю применения производной в различных науках и отраслях. Работа разбита на главы, в каждой из которых рассматривается одна из сторон дифференциального исчисления (геометрический, физический смысл и т. д.)

1. Понятие производной

1-1. Исторические сведения

Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17 столетия на основе двух задач:
1) о разыскании касательной к произвольной линии
2) о разыскании скорости при произвольном законе движения
Еще раньше понятие производной встречалось в работах итальянского математика Тартальи (около 1500 - 1557 гг.) - здесь появилась касательная в ходе изучения вопроса об угле наклона орудия, при котором обеспечивается наибольшая дальность полета снаряда.
В 17 веке на основе учения Г.Галилея о движении активно развивалась кинематическая концепция производной. Различные изложения стали встречаться в работах у Декарта, французского математика Роберваля, английского ученого
Л. Грегори. Большой вклад в изучение дифференциального исчисления внесли
Лопиталь, Бернулли, Лагранж, Эйлер, Гаусс.

1-2. Понятие производной

Пусть y = f(x) есть непрерывная функция аргумента x, определенная в промежутке (a; b), и пусть х0 - произвольная точка этого промежутка
Дадим аргументу x приращение ?x, тогда функция y = f(x) получит приращение
?y = f(x + ?x) - f(x). Предел, к которому стремится отношение ?y / ?x при
?x > 0, называется производной от функции f(x). y'(x)=[pic]

1-3. Правила дифференцирования и таблица производных

|C' = 0 |(xn) = nxn-1 |(sin x)' = cos x |
|x' = 1 |(1 / x)' = -1 / x2|(cos x)' = -sin x |
|(Cu)'=Cu' |(?x)' = 1 / 2?x |(tg x)' = 1 / cos2 x |
|(uv)' = u'v + uv' |(ax)' = ax ln x |(ctg x)' = 1 / sin2 x |
|(u / v)'=(u'v - uv') |(ex)' = ex |(arcsin x)' = 1 / ? (1-|
|/ v2 | |x2) |
| |(logax)' = (logae)|(arccos x)' = -1 / ? |
| |/ x |(1- x2) |
| |(ln x)' = 1 / x |(arctg x)' = 1 / ? (1+ |
| | |x2) |
| | |(arcctg x)' = -1 / ? |
| | |(1+ x2) |

2. Геометрический смысл производной

2-1. Касательная к кривой

Пусть имеем кривую и на ней фиксированную точку M и точку N. Касательной к точке M называется прямая, положение которой стремится занять хорда MN, если точку N неограниченно приближать по кривой к M.

Рассмотрим функцию f(x) и соответствующую этой функции кривую y = f(x). При некотором значении x функция имеет значение y = f(x). Этим значениям на кривой соответствует точка M(x0, y0). Введем новый аргумент x0 + ?x, его значению соответствует значение функции y0 + ?y = f(x0 + ?x).
Соответствующая точка - N(x0 + ?x, y0 + ?y). Проведем секущую MN и обозначим ? угол, образованный секущей с положительным направлением оси Ox.
Из рисунка видно, что ?y / ?x = tg ?. Если теперь ?x будет приближаться к
0, то точка N будет перемещаться вдоль кривой , секущая MN - поворачиваться вокруг точки M, а угол ? - меняться. Если при ?x > 0 угол ? стремится к некоторому ?, то прямая, проходящая через M и составляющая с положительным направлением оси абсцисс угол ?, будет искомой касательной. При этом, ее угловой коэффициент:

[pic]
То есть, значение производной f '(x) при данном значении аргумента x равно тангенсу угла, образованного с положительным направлением оси Ox касательной к графику функции f(x) в точке M(x, f(x)).

Касательная к пространственной линии имеет определение, аналогичное определению касательной к плоской кривой. В этом случае, если функция задана уравнением z = f(x, y), угловые коэффициенты при осях OX и OY будут равны частным производным f по x и y.

2-2. Касательная плоскость к поверхности

Касательной плоскостью к поверхности в точке M называется плоскость, содержащая касательные ко всем пространственным кривым поверхности, проходящим через M - точку касания.

Возьмем поверхность, заданную уравнением F(x, y, z) = 0 и какую-либо обыкновенную точку M(x0, y0, z0) на ней. Рассмотрим на поверхности некоторую кривую L, проходящую через M. Пусть кривая задана уравнениями x = ?(t); y = ?(t); z = ?(t).
Подставим в уравнение поверхности эти выражения. Уравнение превратится в тождество, т. к. кривая целиком лежит на поверхности. Используя свойство инвариантности формы дифференциала, продифференцируем полученное уравнение по t:

[pic]
Уравнения касательной к кривой L в точке M имеют вид:

[pic]
Т. к. разности x - x0, y - y0, z - z0 пропорциональны соответствующим дифференциалам, то окончательное уравнение плоскости выглядит так:

F'x(x - x0) + F'y(y - y0) + F'z(z - z0)=0 и для частного случая z = f(x, y):

Z - z0 = F'x(x - x0) + F'y(y - y0)
Пример: Найти уравнение касательной плоскости в точке (2a; a; 1,5a) гиперболического параболоида

[pic]
Решение:

Z'x = x / a = 2; Z'y = -y / a = -1
Уравнение искомой плоскости:

Z - 1.5a = 2(x - 2a) - (Y - a) или Z = 2x - y - 1.5a

3. Использование производной в физике

3-1. Скорость материальной точки

Пусть зависимость пути s от времени t в данном прямолинейном движении материальной точки выражается уравнением s = f(t) и t0 -некоторый момент времени. Рассмотрим другой момент времени t, обозначим ?t = t - t0 и вычислим приращение пути: ?s = f(t0 + ?t) - f(t0). Отношение ?s / ?t называют средней скоростью движения за время ?t, протекшее от исходного момента t0. Скоростью называют предел этого отношения при ?t > 0.

Среднее ускорение неравномерного движения в интервале (t; t + ?t) - это величина =?v / ?t. Мгновенным ускорением материальной точки в момент времени t будет предел среднего ускорения:

[pic]
То есть первая производная по времени (v'(t)).

Пример: Зависимость пройденного телом пути от времени задается уравнением s
= A + Bt + Ct2 +Dt3 (C = 0,1 м/с, D = 0,03 м/с2). Определить время после начала движения, через которое ускорение тела будет равно 2 м/с2.

Решение: v(t) = s'(t) = B + 2Ct + 3Dt2; a(t) = v'(t) = 2C + 6Dt = 0,2 + 0,18t =

2;

1,8 = 0,18t; t = 10 c

3-2. Теплоемкость вещества при данной температуре

Для повышения различных температур T на одно и то же значение, равное T1 -
T, на 1 кг. данного вещества необходимо разное количество теплоты Q1 - Q, причем отношение

[pic] для данного вещества не является постоянным. Таким образом, для данного вещества количество теплоты Q есть нелинейная функция температуры T: Q = f(T). Тогда ?Q = f(t + ?T) - f(T). Отношение

[pic] называется средней теплоемкостью на отрезке [T; T + ?T], а предел этого выражения при ?T > 0 называется теплоемкостью данного вещества при температуре T.

3-3. Мощность

Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы. Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности:[pic].

4. Дифференциальное исчисление в экономике

4-1. Исследование функций

Дифференциальное исчисление - широко применяемый для экономического анализа математический аппарат. Базовой задачей экономического анализа является изучение связей экономических величин, записанных в виде функций. В каком направлении изменится доход государства при увеличении налогов или при введении импортных пошлин? Увеличится или уменьшится выручка фирмы при повышении цены на ее продукцию? В какой пропорции дополнительное оборудование может заменить выбывающих работников? Для решения подобных задач должны быть построены функции связи входящих в них переменных, которые затем изучаются с помощью методов дифференциального исчисления. В экономике очень часто требуется найти наилучшее или оптимальное значение показателя: наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т. д. Каждый показатель представляет собой функцию от одного или нескольких аргументов. Таким образом, нахождение оптимального значения показателя сводится к нахождению экстремума функции.
По теореме Ферма, если точка является экстремумом функции, то производная в ней либо не существует, либо равна 0. Тип экстремума можно определить по одному из достаточных условий экстремума:
1) Пусть функция f(x) дифференцируема в некоторой окрестности точки x0.
Если производная f '(x) при переходе через точку x0 меняет знак с + на -, то x0 - точка максимума, если с - на +, то x0 - точка минимума, если не меняет знак, то в этой точке нет экстремума.
2) Пусть функция f(x) дважды дифференцируема в некоторой окрестности точки x0, причем f '(x0) = 0, f ''(x0) ? 0, то в точке x0 функция f(x0) имеет максимум, если f ''(x0) < 0 и минимум, если f ''(x0) > 0.
Кроме того, вторая производная характеризует выпуклость функции (график функции называется выпуклым вверх [вниз] на интервале (a, b), если он на этом интервале расположен не выше [не ниже] любой своей касательной).

Пример: выбрать оптимальный объем производства фирмой, функция прибыли которой может быть смоделирована зависимостью:

?(q) = R(q) - C(q) = q2 - 8q + 10
Решение:

?'(q) = R'(q) - C'(q) = 2q - 8 = 0 > qextr = 4

При q < qextr = 4 > ?'(q) < 0 и прибыль убывает

При q > qextr = 4 > ?'(q) > 0 и прибыль возрастает
При q = 4 прибыль принимает минимальное значение.
Каким же будет оптимальный объем выпуска для фирмы? Если фирма не может производить за рассматриваемый период больше 8 единиц продукции (p(q = 8) = p(q = 0) = 10), то оптимальным решением будет вообще ничего не производить, а получать доход от сдачи в аренду помещений и / или оборудования. Если же фирма способна производить больше 8 единиц, то оптимальным для фирмы будет выпуск на пределе своих производственных мощностей.

4-2. Эластичность спроса

Эластичностью функции f(x) в точке x0 называют предел

[pic]
Спрос - это количество товара, востребованное покупателем. Ценовая эластичность спроса ED - это величина, характеризующая то, как спрос реагирует на изменение цены. Если |ED|>1, то спрос называется эластичным, если |ED|

©2007—2016 Пуск!by | По вопросам сотрудничества обращайтесь в contextus@mail.ru