| |||
Реферат: Оптоволоконные линии связи1. Обзор существующих методов передачи на волоконно-оптических системах передачи городских телефонных сетей.
Особенностью соединительных линий (С.Л) является относительно небольшая
их длина за счет глубокого районирования сетей. Статистика распределения
протяженности С.Л городской телефонной сети в крупнейших городах России
свидетельствует, что С.Л протяженностью до 6 км составляют 65% от всего
числа СЛ. Значительные расстояния между регенерационными пунктами ВОСП
дают возможность отказаться от оборудования регенераторов в колодцах
телефонной канализации, а также от организации дистанционного питания РАТС РАТС РАТС РАТС РАТС РАТС В наиболее общем виде принцип передачи информации в волоконно- оптических системах связи можно пояснить с помощью рис.1.2. На передающей стороне на излучатель, в качестве которого в ВОСП используется светодиод или полупроводниковый лазер, поступает электрический сигнал, предназначенный для передачи по линии связи. Этот сигнал модулирует оптическое излучение, в результате чего электрический сигнал преобразуется в оптический. На приемной стороне оптический сигнал из О.В. вводится в фотодетектор (Ф.Д). В современных ВОСП в качестве Ф.Д. используют p-i-n или лавинный фото диод (ЛФД). Фотодетектор преобразует падающее на него оптическое излучение в исходный электрический сигнал. Затем электрический сигнал поступает на усилитель (регенератор) и отправляется получателю сообщения. Внедрение ВОСП на местных сетях началось в 1986 г. вводом в
эксплуатацию на ГТС вторичной цифровой волоконно-оптической системы
передачи на базе аппаратуры «Соната-2». С её использованием во многих
городах сооружены линии связи. Аппаратура «Соната-2» сопрягается со
стандартным канало - и группо-образующим оборудованием типов ИКМ-30 и ИКМ- Выбор элементной базы при реализации ВОСП и параметры её линейного
тракта зависят от скорости передачи символов цифрового сигнала. МККТТ
установлены правила объединения цифровых сигналов и определена иерархия
аппаратуры временного объединения цифровых сигналов электросвязи. Сущность
иерархии состоит в ступенчатом расположении указанной аппаратуры, при
котором на каждой ступени объединяется определённое число цифровых
сигналов, имеющих одинаковую скорость передачи символов, соответствующую
предыдущей ступени. Цифровые сигналы во вторичной, третичной, и т.д.
системах получаются объединением сигналов предыдущих иерархических систем. Аппаратура, в которой выполняется объединение этих сигналов, называется
аппаратурой временного объединения цифровых сигналов. На выходе этой
аппаратуры цифровой сигнал скремблируется скремблером, то есть
преобразуется по структуре без изменения скорости передачи символов для
того, чтобы приблизить его свойства к свойствам случайного сигнала Для каждой иерархической скорости МККТТ рекомендует свои коды стыка,
например для вторичной – код HDB-3, для четверичной – код CMI и т.д. 1 Линейные коды ВОСП на ГТС Оптическое волокно, как среда передачи, а также оптоэлектронные компоненты фотоприёмника и оптического передатчика накладывают ограничивающие требования на свойства цифрового сигнала, поступающего в линейный тракт. По этому между оборудованием стыка и линейным трактом ВОСП помещают преобразователь кода. Выбор кода оптической системы передачи сложная и важная задача. На выбор кода влияет, во первых, нелинейность модуляционной характеристики и температурная зависимость излучаемой оптической мощности лазера, которые приводят к необходимости использования двухуровневых кодов. Во вторых, вид энергетического спектра, который должен иметь
минимальное содержание низкочастотных (НЧ) и высокочастотных (ВЧ)
компонент. Энергетический спектр содержит непрерывную и дискретную части. В третьих, для выбора кода существенно высокое содержание информации о
тактовом синхросигнале в линейном сигнале. В приёмнике эта информация
используется для восстановления фазы и частоты хронирующего колебания,
необходимого для управления принятием решения в пороговом устройстве. В четвертых, код не должен каких-либо ограничений на передаваемое сообщение и обеспечивать однозначную передачу любой последовательности нулей и единиц. В пятых, код должен обеспечивать возможность обнаружения и исправления
ошибок. Основной величиной, характеризующей качество связи, является
частость появления ошибок или коэффициент ошибок, определяемый отношением
среднего количества неправильно принятых посылок к их общему числу. Кроме вышеперечисленных требований на выбор кода оказывает влияние простота реализации, низкое потребление энергии и малая стоимость оборудования линейного тракта. В современных оптоволоконных системах связи для городской телефонной
сети ИКМ-120-4/5 и ИКМ-480-5 для передачи в качестве линейного кода
используется код CMI, отвечающий большинству вышеперечисленных требований. 2 Источники излучения ВОСП Источники излучения волоконно-оптических систем передачи должны
обладать большой выходной мощностью, допускать возможность разнообразных
типов модуляции излучения, иметь малые габариты и стоимость, большой срок
службы, КПД и обеспечить возможность ввода излучения в оптическое волокно с
максимальной эффективностью. Для ВОСП потенциально пригодны твердотельные
лазеры, в которых активным материалом служит иттрий-алюминиевый гранат,
активированный ионами ниодима с оптической накачкой (например СИД), у
которого основной лазерный переход сопровождается излучением с длиной волны Первое поколение передатчиков сигналов по оптическому волокну было
внедрено в 1975 году. Основу передатчика составлял светоизлучающий диод,
работающий на длине волны 0.85 мкм в многомодовом режиме. В течение
последующих трех лет появилось второе поколение - одномодовые передатчики,
работающие на длине волны 1.3 мкм. В 1982 году родилось третье поколение
передатчиков - диодные лазеры, работающие на длине волны 1.55 мкм. 3 Детекторы ВОСП Функция детектора волоконно-оптических систем передачи сводится к
преобразованию входного оптического сигнала, который затем, как правило,
подвергается усилению и обработке схемами фотоприемника. Предназначенный
для этой цели фотодетектор должен воспроизводить форму принимаемого
оптического сигнала, не внося дополнительного шума, то есть обладать
требуемой широкополосностью, динамическим диапазоном и чувствительностью.
Оптический кабель (ОК) предназначен для передачи информации, содержащейся в модулированных электромагнитных колебаниях оптического диапазона. В настоящее время используется диапазон длин волн от 0.8 до 1.6 мкм, соответствующий ближним инфракрасным волнам. В будущем возможно расширение рабочего диапазона в область дальних инфракрасных волн с длинами волн от 5 до 10 мкм. Оптический кабель содержит один или несколько оптических волокон. Оптическое волокно (ОВ) – это направляющая система для электромагнитных волн оптического диапазона. Практическое значение имеют только оптоволокна, изготовленные из высоко прозрачного диэлектрика: стекла или полимера. Для концентрации поля волны вблизи оси оптоволокна используется явление преломления и полного отражения в волокне с показателем преломления, уменьшающимся от оси к периферии плавно либо скачками. Оптическое волокно (ОВ) изготавливается обычно с внешним диаметром 100 – 150 мкм. Конструкция ОВ показана на рис.1.5. Оптическое волокно состоит из сердечника с показателем преломления n1 и оболочки с показателем преломления n2, причем n1>n2. Спецификой ОВ является их высокая чувствительность к внешним механическим воздействиям. Кварцевое оптическое имеет малый температурный коэффициент расширения, высокий модуль упругости и низкий предел упругого растяжения; при относительном удлинении 0.5 – 1.5% оно ломается. Обрыв волокна происходит в сечении, наиболее ослабленном микротрещинами, возникающими на его поверхности. Микротрещины развиваются при попадании на поверхность влаги, поэтому прочность непокрытого волокна быстро уменьшается, особенно во влажной атмосфере. Механические характеристики оптического волокна, поступающего на кабельное производство, столь же важны и подлежат такой же тщательной проверке, как и оптические его параметры. Передача излучения по любому ОВ может осуществляться в двух режимах: одномодовом и многомодовом. Одномодовым называется такой режим, при котором распространяется только одна основная мода Если неравенство (1.1) не удовлетворено, то в ОВ устанавливается многомодовый режим. Очевидно, что тип модового режима зависит от характеристик оптического волокна (а именно радиуса сердцевины и величины показателей преломления) и длины волны передаваемого излучения. Оптические волокна, предназначенные для работы в одномодовом режиме, называют одномодовыми оптическими волокнами. Соответственно ОВ для многомодового режима называют многомодовыми. ,где ? - длина волны передаваемого излучения, n1 и n2 – показатели преломления материалов ОВ. Различают оптические волокна со ступенчатым профилем, у которых показатель преломления сердцевины n1 одинаков по всему поперечному сечению, и градиентные - с плавным профилем, у которых n1 уменьшается от центра к периферии (рис.1.6). Фазовая и групповая скорости каждой моды в ОВ зависят от частоты, то
есть оптоволокно является дисперсной системой. Вызванная этим волноводная
дисперсия является одной из причин искажения передаваемого сигнала. Оптические волокна имеют очень малое (по сравнению с другими средами) затухание сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1.55 мкм имеет затухание 0.154 дБ/км. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фтороцирконатные волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2.5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с. На сегодняшний день для городской телефонной сети отечественной
промышленностью выпускаются кабели марки ОК имеющие четыре и восемь
волокон. Конструкция ОК-8 приведена на рис.1. 7. Оптические волокна 1 Недостатки волоконно-оптической технологии: А.Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение. Точность изготовления таких элементов линии связи должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее. Б.Другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование. В.Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями Тем не менее, преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что, несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации. Одноволоконные оптические системы передачи. Широкое применение на городской телефонной сети волоконно-оптических
систем передачи для организации межузловых соединительных линий позволяет в
принципе решить проблему увеличения пропускной способности сетей. В
ближайшие годы потребность в увеличении числа каналов будет продолжать
быстро расти. Наиболее доступным способом увеличения пропускной способности Наиболее распространенные и хорошо изученные ОВОСП, работающие на одной оптической несущей, кроме оптического передатчика и приемника содержат пассивные оптические разветвители. Замена оптических разветвителей н оптические циркуляторы позволяет уменьшить потери в линии 6 дБ, а длину линии – соответственно увеличить. При использовании разных оптических несущих и устройств спектрального разделения каналов можно в несколько раз повысить пропускную способность и соответственно снизить стоимость в расчете на один канало - километр. Увеличить развязку между противонаправленными оптическими сигналами, снизить требования к оптическим разветвителям, а следовательно, уровень помех и увеличить длину линии можно путем специального кодирования, при котором передача сигналов одного направления осуществляется в паузах передачи другого направления. Кодирование сводится к уменьшению длительности оптических импульсов и образованию длительных пауз, необходимых для развязки сигналов различных направлений. В ВОСП, построенных подобным образом, могут быть использованы эрбиевые волоконно- оптические усилители. Развязку между оптическими сигналами можно увеличить, не прибегая к обужению импульсов, если для передачи в одном направлении когерентное оптическое излучение и соответствующие методы модуляции, а в другом – модуляцию сигнала по интенсивности. При этом существенно уменьшается влияние как оптических разветвителей, так и обратного рассеяния оптического волокна. Если позволяет энергетический потенциал аппаратуры, на относительно коротких линиях может быть использован только один оптический источник излучения на одном конце линии. На другом конце вместо модулируемого оптического источника применяется модулятор отраженного излучения. Такой метод дуплексной связи по одному ОВ обеспечивает высокую надежность оборудования и применение волоконно-оптических систем передачи в экстремальных условиях эксплуатации. При нынешнем высоком уровне развития волоконно-оптической техники появилась возможность передавать оптически сигналы на различных модах ОВ с достаточной для ВОСП развязкой, при этом дуплексная связь по одному ОВ организовывается на двух разных модах, распространяющихся в разных направлениях, с использованием модовых фильтров и формирователей мод излучения. Каждая одноволоконная ВОСП рассмотренных типов имеет достоинства и недостатки. В таблице 1.1 показаны достоинства (знаком «+») систем, их возможности в отношении достижения наилучших параметров. 1 Волноводные оптические системы спектрального мультиплексирования/демультиплексирования С появлением волоконных световодов (ВС) и интегральной оптики (ИО),
основанной на волноводном распространении света в тонких пленках, проблема
освоения и использования огромного оптического диапазона в интересах связи
приобрела практическое значение. Этому также способствовали успехи в
развитии волоконно-оптических линий связи (ВОЛС), планарных оптических
волноводов, интегральных полупроводниковых лазеров и других приборов ИО. Таблица 1.1 - Сравнительная характеристика принципов построения одноволконных ВОСП |Тип ВОСП |Минимально|Защище|Большой |Относит|Высокая | мультиплексирования/демультиплексирования позволяет не только решать задачи оконечных устройств волоконной связи на дальние расстояния (материк - материк, город - город), но и перейти к решению задач внутригородской связи, вплоть до связи типа дом - дом. Кроме того, достоинством ВСМ/Д является возможность их реализации с помощью известных, хорошо разработанных технологических методов микроэлектроники и интегральной оптики, дающих возможность на одном кристалле объединить оптические и электронные схемы, а также обеспечить соединение с ВС. При этом научная и технологическая база для коммерческого использования ВСМ/Д в основном подготовлена. 1 Принципиальные схемы и основные характеристики ВСМ/Д. В основе ВСМ/Д лежит известный объемный анализатор спектра типа
эшелона Майкельсона, представляющий собой фазовую решетку со сравнительно
небольшим числом интерферирующих лучей и большой постоянной разностью фаз
между соседними лучами. Его волноводное воплощение получило ряд названий [pic]рис.2.1 Основные характеристики ВСМ/Д и ВСА в связи с принципом обратимости хода лучей, практически одинаковы, а вывод формул можно провести по аналогии с выводом для объемного эшелона Майкельсона, с учетом тою, что лучи света распространяются по планарным (канальным) волноводам или волоконным световодам. На рис.2.1 приведены схемы диспергирующих систем D?’h/?x0?b, ?’Nh/?b ??’?2/hb ??’?/?x0, ??’?2/Nhb, ??’?/N?x0 b=??-?(d??/d?) ??’?1-?2, К=??h/?, (1.2)
где D? - угловая дисперсия; ? - разрешающая способность; ?? - спектральная
область дисперсии; ?? - угловой интервал между соседними порядками
спектра; ?? и ?? - минимальный интервал и минимальный угол между двумя
разрешенными по Рэлею линиями; b - дисперсионный множитель; h - постоянная
разность длины пути между соседними ступенями (волноводами); x0 - ширина
ступеней (каналов); ?1 и ?2- эффективные показатели преломления
ступенчатой структуры и несущего волновода; ? - длина волны в вакууме; N -
число интерферирующих лучей (каналов); К -порядок спектра. Для волноводных
мультиплексоров на основе канальных волноводов и волоконных световодов Схемы, приведенные на рис. 1. могут быть выполнены и гибридном или
волноводном варианте. В первом случае ввод оптических сигналов (?1, ... Перспективным направлением в развитии ВСМ является объединение
дисперсионного и фокусирующего элементов. Впервые такое объединение было
предложено и осуществлено путем создания квадратичного фазового
распределения на выходе диспергирующей системы, получаемого в результате
небольшого изменения длин оптических каналов диспергирующей системы. В приведенных выше схемах предполагалось использование одномодовых
волноводов и, соответственно, одномодового режима работы, для которого
выполняется условие фазового согласования при длине волны ?’??h/K (или ?’?TE?L/2+?TM?L/2/K - - для падающей ТE моды, ?’?TM?L/2+?TE?L/2/K - - для падающей ТM моды,
где ?TE и ?TM - эффективные показатели преломления волноводов для ТЕ и ТМ
мод соответственно. Как видим, зависимость от поляризации полностью
компенсируется с помощью этого метода. Данный метод отличается тем, что
для исключения зависимости от поляризации нет необходимости в уменьшении
двулучепреломления волноводов. В случае ВСМ/Д на основе волноводов из Следует отметить также метод исключения поляризационной зависимости с
помощью осаждения аморфной кварцевой пленки на волновод. Пленка имеет
остаточную деформацию и компенсирует волноводное двулучепреломление. 2 Реализация ВСМ/Д. Исходя из перспектив использования ВСМ применительно к связи особую значимость приобретают такие характеристики, как затухание оптических сигналов в процессе прохождения через мультиплексор, максимальное количество каналов, плоскость амплитудно-частотной характеристики мультиплексора по каналам во всей полосе длин волн (частот) мультиплексора и в пределах отдельного канала, перекрестные помехи, независимость от поляризации и, наконец, стоимость устройства. Рассмотрим некоторые варианты реализации ВСМ. Волноводные спектральные мультиплексоры/демультиплексоры (ВСМ/Д) на Потери в волноводах и при изгибе канальных волноводов можно свести к минимуму путем выбора соответствующих материалов волноводов, их параметров и достаточно большого радиуса кривизны. Потери при соединении канальных волноводов с планарными волноводами звездных соединителей могут быть значительными. Для их уменьшения предложено использовать рупоры, сужающиеся волноводы, изменять расстояния между выходными концами канальных волноводов и т. п. Для волноводной системы SiO2/Si потери при передаче волокно - волокно составили 2,3 ... 2,8 дБ. При этом потери на кристалле соответствуют 1,7 дБ. Систематическое изучение потерь в ВСМ было проведено с помощью
программы, учитывающей распространение излучения в трехмерном
пространстве. В частности, было изучено влияние различных параметров [pic]
канальных волноводов (толщина пластины, ширина волновода, высота гребня и
др.) на потери при передаче мощности из канальных волноводов в область
звездного соединителя. Область перехода канальных волноводов к звездному
соединителю и их поперечное сечение показаны на рис. 2.3, 2.4. Изучение потерь показало, что для получения максимального коэффициента
передачи через звездный соединитель следует использовать толстые
волноводные слои, малую разность показателей преломления волноводного слоя
и подложки, короткие гребневые волноводы и большие факторы заполнения Уменьшение потерь при распространении сигналов в значительной степени
зависит от правильного выбора формы траекторий оптических каналов. Путь
решения проблемы минимизации потерь состоит в использовании семейства
полиномиальных Р- и WP-кривых (рис.2.5), обеспечивающих соединение заданных начальных и конечных точек кривыми с непрерывно изменяющейся кривизной, и оптимизируют прохождение излучения по траекториям с минимальными потерями. Таким образом, минимальные размеры устройства определяются заданным уровнем потерь. Расчеты выполняются с помощью простого алгоритма на компьютере типа PC. С помощью предложенной методики был рассчитан и реализован мультиплексор на основе волноводного слоя Si02, нанесенного путем эпитаксиального осаждения из газовой фазы на кремниевую подложку. Параметры изготовленного мультиплексора приведены ниже: Рабочая длина волны 1,55 мкм Показатель преломления подложки 1,469 Разность показателей преломления 1,5 х 10-2 Размеры канала (ширина, полная высота, протравленная высота) 6,5 х 4,5 х 2,5 мкм3 Число входных/выходных каналов 16/16 Спектральное разрешение 1,6 им (200 ГГц) Спектральная область 25,6 нм Число каналов 60 Длина дисперсионного элемента 6.1 мм Расстояние между каналами на входе звездного соединителя 20 мкм Порядок интерференции 60 Разность длин оптического пути двух соседних каналов 63.1 мкм Площадь устройства 4,2 х 1,7 см2 Измеренные потери при передаче волокно - волокно составили 5±2 дБ, средний спектральный интервал между каналами - 199.5 ГГц, средняя ширина полосы каналов по уровню половины интенсивности - 44 ГГц. В пределах ширины полосы канала перекрестные помехи соответствовали 35 дБ. В результате взаимного влияния каналов возникают аберрации. Для их уменьшения может быть использована корректирующая схема, которая оптимизирует положения фокусов звездных соединителей и длины каналов диспергирующей системы так, чтобы обеспечить более точное выполнение преобразования Фурье в звездных соединителях. Такой в мультиплексор может работать как N х N переключатель. Если к входам мультиплексора подсоединить N лазеров, каждый из которых перестраивается в пределах N длин волн, то любой из лазеров может быть соединен с любым выходным каналом. Наряду с гребенчатыми волноводами в мультиплексорах используются заращенные или закрытые покровным слоем волноводы. В этих случаях применяются волноводы с сердцевиной, повышенный показатель преломления которой обеспечивается путем введения легирующих примесей, использования композиционных волноводов и др. Сердцевина канальных волноводов обычно имеет площадь 25...50 мкм2 и разность показателей преломления доли процента от n. Это обеспечивает малые потери при распространении излучения по волноводам (0,05...0,1 дБ/см) и при стыковке волноводов с волоконными световодами (~0,1 дБ). Таблица 2.1 Экспериментальные и теоретические характеристики
мультиплексоров |
|