| |||
Реферат: Электрорадиоматериалы. Методические указания к лабораторным работамЭлектрорадиоматериалы Методические указания к лабораторным работам Санкт-Петербург 2000 Составители: ст. преп. Г. И. Иванова, доценты Г. А. Татарникова, Б. В. Электрорадиоматериалы. Методические указания к лабораторным работам./ Ил. 26, табл. 18. © Содержание Работа 1. Исследование электрических свойств проводниковых материалов 4 1. Краткие сведения из теории 4 2. Описание экспериментальной установки 6 3. Порядок проведения работы 6 4. Оформление отчета 7 1. Краткие сведения из теории 7 2. Описание экспериментальной установки 9 3. Порядок выполнения работы. 9 4. Оформление отчета 10 1. Краткие сведения из теории 11 2. Описание экспериментальной установки 12 3. Порядок выполнения работы 13 4. Оформление отчета 14 1. Краткие сведения из теории 14 2. Описание экспериментальной установки 16 3. Порядок проведения работы. 16 4. Оформление отчета 17 1. Краткие сведения из теории 17 2. Описание экспериментальной установки 19 3. Порядок выполнения работы 19 4. Оформление отчета 21 1. Краткие сведения из теории 21 2. Описание экспериментальной установки 23 3. Порядок выполнения работы 24 4. оформление отчета 25 Работа 1. Исследование электрических свойств проводниковых материалов Цель работы: 1. Краткие сведения из теории Основные свойства проводниковых материалов характеризуются величиной удельного сопротивления электрическому току (, температурным коэффициентом удельного электрического сопротивления (( (ТК(), величиной термоэлектродвижущей силы ЕТ. Наилучшими проводниками электрического тока являются металлы. Механизм протекания тока в металлах, находящихся в твердом или жидком состояниях, обусловлен движением свободных электронов, поэтому металлы являются материалами с электронной электропроводностью. Электропроводность металлов зависит от совершенства кристаллической решетки: чем меньше дефектов имеет кристаллическая решетка, тем выше электропроводность. Поэтому чистые металлы обладают наименьшими значениями удельного сопротивления, а сопротивление сплавов всегда выше сопротивлений металлических компонентов, входящих в их состав. Металлические проводниковые материалы могут быть разделены на проводники малого сопротивления (( ( 0,1 мкОм(м) – медь, серебро, алюминий и т. д., и проводники (сплавы) высокого сопротивления. Последние в свою очередь делятся на термостойкие сплавы для электронагревательных приборов – нихром, хромаль, фехраль и др., и термостабильные сплавы для образцовых резисторов – манганин, константан. B соответствии с электронной теорией металлов: [pic], (1.1) где mo = 9,109(10-31 кг, e = 1,602(10-19 Кл – масса покоя и заряд электрона; [pic]( 105 м/с – средняя скорость теплового движения электронов; no = 1028 м-3 — число электронов в единице объема; (ср – средняя длина свободного пробега электронов. Величина удельного электрического сопротивления проводников в основном
зависит от средней длины свободного пробега электронов (ср. С повышением
температуры амплитуда колебаний узлов кристаллической решетки
увеличивается, средняя длина свободного пробега электронов уменьшается Температурным коэффициентом удельного сопротивления (( (ТК() называется относительное изменение удельного сопротивления при изменении температуры на один Кельвин (градус): [pic] (1.2) Зависимость удельного сопротивления от температуры вызывается не
только уменьшением длины свободного пробега электронов, но и увеличением
линейных размеров проводника. Поэтому (( имеет две составляющие: (( = Таблица 1.1
Температурный коэффициент электрического сопротивления (ТКR) резистора определяется выражением [pic], (1.4) где Ro –сопротивление проводника при температуре То. Производная [pic] определяется по касательной к кривой R(T) (рис.1.2). Для определения производной dR/dT = dR/d( (Т – температура в градусах Кельвина, ( – в °С) строится зависимость R(() (рис. 1.2). При заданной температуре (точка A) проводится касательная к кривой R((), на которой выбирается участок ab произвольной длины. Производная определяется выражением dR/d( ( (R(((. экспериментально удельное электрическое сопротивление определяется по формуле: [pic], (1.5) где R – электрическое сопротивление проводника, S, I – площадь поперечного сечения и длина проводника. При соприкосновении двух различных металлов между ними возникает контактная разность потенциалов. Причиной этого являются неодинаковые значения работ выхода электронов и различные значения концентрации свободных электронов в соприкасающихся металлах. Термопарой называется устройство, содержащее спай двух проводников или
полупроводников. Если спай двух металлов А и В (термопара) имеет
температуру T1, а свободные (неспаянные) концы температуру T2, причем [pic], (1.6) где [pic]– коэффициент термо-э.д.с. или относительная удельная термо- э.д.с., k=1,381(10-23 Дж/К – постоянная Больцмана, е – заряд электрона, п1, п2 – концентрации свободных электронов в соприкасающихся металлах. В термопарах используют проводники, имеющие большой и стабильный в рабочем диапазоне температур коэффициент термо-э.д.с. 2. Описание экспериментальной установки Экспериментальная установка изображена на рис. 1.3. Образцы
проволочных резисторов R1–R4, изготовленные из меди, константана, манганина
и нихрома, металлопленочный резистор МЛТ-1 (R5) и термопары ТП1–ТП3
помещаются в термостат 1 с термометром 2. Электрическое сопротивление
резисторов измеряется омметром 3, э.д.с. термопар – милливольтметром 4. 3. Порядок проведения работы Внимание: все измерения по последующим пунктам проводятся одновременно. 3.1. Определение удельного электрического сопротивления проводников и вычисление (R, ((. Проводники, помещенные в термостат, поочередно подключить к входным
зажимам омметра и замерить их сопротивления сначала при комнатной
температуре, а затем при повышении температуры до 90 °С с шагом 10 оС. Таблица 1.2 3.2. Определение зависимости термо-э.д.с термопар от температуры. Одновременно с нагреванием проводников нагреваются помещенные в термостат спаи трех термопар. Холодные концы термопар поочередно подключить переключателем П1 к милливольтметру. Значения измеренных термо-э.д.с. занести в табл. 1.3. Таблица 1.3 | |ET, мВ | 4. Оформление отчета Привести схемы экспериментальных установок, данные измерительных приборов и
исследуемых элементов, а также таблицы измерений. Контрольные вопросы 1. Какие материалы относятся к классу проводников? Работа 2. Исследование свойств терморезисторов Цель работы: а) определение зависимости сопротивления терморезисторов от температуры; б) определение энергии активации и коэффициента температурной чувствительности полупроводника; в) оценка величины постоянной времени тепловой инерции терморезисторов; г) построение динамических вольтамперных характеристик терморезисторов. 1. Краткие сведения из теории Терморезистором называется полупроводниковый резистор, сопротивление которого в сильной степени зависит от температуры. Удельная электрическая проводимость полупроводников [pic], (2.1) где [pic] – концентрация, [pic]– подвижность электронов и дырок соответственно. В примесных (n-типа или p-типа) полупроводниках одним из слагаемых в приведенном выражении можно пренебречь. Подвижность носителей при нагревании изменяется сравнительно слабо (по степенному закону, ([pic]), а концентрация очень сильно (по экспоненциальному закону, ([pic]). Поэтому температурная зависимость удельной проводимости полупроводников подобна температурной зависимости концентрации основных носителей, а электрическое сопротивление терморезисторов может быть определено по формуле: [pic][pic] (2.2) где Nо – коэффициент, зависящий от типа и геометрических размеров полупроводника; (Э – энергия активации примесей (для примесных полупроводников) или ширина запрещенной зоны (для собственных полупроводников), k – постоянная Больцмана. постоянная В =(Э/k носит название коэффициент температурной чувствительности и приводится в паспортных данных на терморезистор. экспериментально коэффициент температурной чувствительности определяют по формуле [pic] (2.3) где Т1 и Т2 – исходная и конечная температуры рабочего температурного диапазона, R1 и R2 – сопротивления терморезистора при температуре соответственно Т1 и Т2. На рис. 2.1 приведен график зависимости сопротивления полупроводникового резистора от температуры. Чаще всего терморезисторы имеют отрицательный температурный коэффициент сопротивления (R. Выпускаются также терморезисторы, имеющие в сравнительно узком интервале температур положительный (R и называемые позисторами. При нагревании величина сопротивления терморезисторов убывает, а позисторов возрастает в сотни и тысячи раз. В справочниках значение (R приводится для температуры 20 оС. Значения (R терморезисторов для любой температуры в диапазоне 20…150 оС можно определить по формуле: [pic] (2.4) терморезистор характеризуется определенной тепловой инерцией,
зависящей от химических свойств полупроводника и конструкции элемента Если терморезистор, имеющий температуру (о, поместить в среду с температурой (с((о, то его температура будет изменяться с течением времени по показательному закону: [pic]. (2.5) На рис.2.2 показан процесс изменения температуры терморезистора при
его остывании. [pic] Различают статическую и динамическую вольтамперные характеристики Терморезистор обладает одной статической и семейством динамических При длительности импульса [pic] терморезистор не успевает нагреться и сопротивление его практически не изменяется с ростом напряжения. При длительности [pic] терморезистор нагревается, и ВАХ становится существенно нелинейной. Чем больше длительность импульса, тем больше ток при одной и той же величине напряжения. Статическая ВАХ соответствует [pic]. 2. Описание экспериментальной установки Эксперимент проводится на установке аналогичной изображенной на рис.1.3. терморезистор помещается в термостат, температура внутри которого измеряется термометром или термопарой. Сопротивление резистора измеряется омметром. снятие вольтамперных характеристик выполняется по схеме, приведенной на рис. 2.5. Измерительной цепь питается от источника постоянного регулируемого напряжения ИП со встроенным вольтметром V. Ток через терморезистор измеряется миллиамперметром. [pic] 3. Порядок выполнения работы. 3.1. снятие зависимости R(() сопротивления терморезистора от температуры. Включить термостат, электронный термометр и омметр. Измерить сопротивление терморезистора при различных температурах – от комнатной до максимальной, равной 90°С, с интервалом (( =10 °С. Результаты опыта занести в табл. 2.1. Таблица 2.1 |Опыт |Расчет |Примечание | 3.2. определение тепловой постоянной времени терморезистора. Измерив сопротивление терморезистора при 90 °С, быстро извлечь его из термостата. Момент извлечения принять за t = 0. Отключить термостат. фиксируя время, измерять сопротивление терморезистора при его остывании до тех пор, пока оно не увеличится примерно в три раза. Данные измерений занести в табл. 2.2. Таблица 2.2 3.3. Снятие динамических вольтамперных характеристик Собрать электрическую схему установки в соответствии с рис. 2.5. Установить напряжение на выходе источника питания ИП равное 5В. Таблица 2.3 |U, В|i (мА) через [pic]с | 4. Оформление отчета Привести схемы экспериментальных установок, данные измерительных приборов и
исследуемых элементов, а также таблицы измерений. Контрольные вопросы 1. Что называют терморезистором? Работа З. Исследование свойств варисторов Цель работы – исследование основных свойств варисторов и иллюстрация их практического применения. 1. Краткие сведения из теории варистором называется нелинейный полупроводниковый резистор, электрическое сопротивление которого изменяется в зависимости от приложенного напряжения. Варисторы изготавливаются из размолотого карбида кремния (SiC) с добавкой связующего вещества. Причинами, обусловливающими нелинейность вольтамперной характеристики варистора, являются: – микронагрев контактов между отдельными зернами карбида кремния, приводящий к возрастанию проводимости элемента во всем объеме; – увеличение проводимости вследствие частичного пробоя оксидных пленок,
покрывающих зерна карбида кремния, при напряженностях электрического поля E ВАХ варистора (рис. 3.1), как и всякого нелинейного резистора, в рабочей точке (точка А) характеризуется статическим и дифференциальным сопротивлениями [pic] (3.1) где МU, MI — масштабы по осям координат. Степень нелинейности ВАХ оценивается коэффициентом нелинейности [pic], (3.2) который у варисторов довольно велик (( = 2…7) и несколько меняется в различных точках ВАХ. Разделяя переменные в выражении (3.2) и интегрируя, можно получить аналитическую аппроксимацию ВАХ варистора [pic], (3.3) где В – постоянная, зависящая от свойств полупроводникового материала и геометрических размеров варистора. Варисторы широко применяются в технике для защиты от перенапряжений Выходное напряжение остается приблизительно постоянным при изменении входного напряжения от Uвх1 до Uвх2, когда величина дифференциального сопротивления варистора равна или близка к величине сопротивления линейного резистора. Количественной оценкой стабилизации напряжения является коэффициент стабилизации [pic] (3.4) При синусоидальном входном напряжении мост стабилизирует действующее значение выходного напряжения. Последнее содержит третью гармонику, удельный вес которой возрастает с ростом амплитуды входного напряжения. 2. Описание экспериментальной установки Вольтамперные характеристики варистора снимаются по схеме рис. 2.5. Измерительной цепь питается от задающего генератора ЗГ. Переключатель Исследование мостового стабилизатора на варисторах проводится по схеме рис.3.6. Питание осуществляется или от источника постоянного напряжения, или от задающего генератора в зависимость от положения переключателя П1. [pic] 3. Порядок выполнения работы 1. Снятие вольтамперной характеристики варистора на постоянном токе Подать питание на измерительную схему рис. 2.5. Изменяя входное напряжение от 0 до 60 В, замерить и записать в табл. 3.1 значения тока через варистор (6…8 точек). Таблица 3.1 |Oпыт |Расчет | 2. Осциллографическое исследование варистора. Подать питание на схему рис.3.5. Зарисовывать на кальку ВАХ варистора
при напряжении на входе 60 В. Определить масштабы по току (по оси у) и по
напряжению (по оси x) для чего, не трогая регуляторов усиления
осциллографа, переключатель П1 перевести в положение «2». На экране
осциллографа получится наклонная прямая – ВАХ линейного резистора. [pic] (3.5) где U – напряжение, измеренное вольтметром, X, Y – проекции ВАХ на оси х, у. 3. Исследование мостового стабилизатора напряжения на варисторах Опыт проводится по схеме рис. 3.6 в режиме холостого хода (Rн = (). а) Исследование моста на постоянном токе. Отключить осциллограф рубильником К. Переключатель П2 установить в
положение «1». Подключить к схеме источник постоянного напряжения и
регулируя его напряжение, установить по цифровому вольтметру V напряжение Таблица 3.2 После проведения опытов отключить от схемы источник постоянного напряжения. б) Исследование моста на переменном токе. Включить осциллограф и подключить его к исследуемой цепи, замкнув рубильник К. Переключить клеммы и переключатель рода работы цифрового вольтметра в режим измерения переменного напряжения. Подать на вход схемы переменное напряжение от задающего генератора ЗГ и провести измерения, аналогичные п. 3.3.а. Результаты измерений занести в табл. 3.2. Для трех значений напряжения, соответствующих участкам ab, bc и cd на рис.3.4, снять на кальку осциллограммы напряжений Uвых(t). 4. Оформление отчета Привести схемы экспериментальных установок, данные измерительных приборов и
исследуемых элементов, а также таблицы с результатами измерений и
вычислений. Контрольные вопросы. 1. Что называется варистором? Из каких материалов их изготавливают? Работа 4. Исследование свойств фоторезисторов Цель работы – исследование основных характеристик фоторезисторов: 1) определение зависимости величины сопротивления от освещенности; 2) получение вольтамперных характеристик при различных значениях освещенности; 3) определение зависимости фототока от величины освещенности 4) определение интегральной чувствительности. 1. Краткие сведения из теории Фоторезистором называется полупроводниковый резистор, сопротивление которого изменяется под действием оптического излучения. Работа некоторых полупроводниковых элементов основана на использовании фотоэлектрического эффекта – явления взаимодействия электромагнитного излучения с веществом, в результате которого энергия фотонов передается электронам вещества. В твердых и жидких полупроводниках различают внешний и внутренний фотоэффекты. В первом случае поглощение фотонов сопровождается вылетом электронов из вещества. Во втором – электроны, оставаясь в веществе, переходят из заполненной энергетической зоны в зону проводимости, обуславливая появление фотопроводимости. В газах фотоэффект состоит в ионизации атомов или молекул под действием излучения. Внутренний фотоэффект, возникающий в паре из электронного и дырочного полупроводников, понижает контактную разность потенциалов, выполняя непосредственное преобразование электромагнитного излучения в энергию электрического поля, что используется в фотодиодах, фототранзисторах. Наиболее ярко внутренний фотоэффект выражен в таких полупроводниковых материалах как селен, германий, кремний, различные селенистые и сернистые соединения таллия, кадмия, свинца и висмута. Из этих материалов изготавливают фотоэлементы и фоторезисторы. В отсутствие облучения фоторезистор обладает некоторым большим
сопротивлением Rт, которое называется темновым. Величина темнового
сопротивления определяется температурой и чистотой полупроводника. При
приложении к фоторезистору разности потенциалов в цепи возникает ток I = Основным параметром фоторезисторов является интегральная чувствительность, под которой понимают отношение фототока к вызвавшему его появление световому потоку белого (немонохромного) света и приложенному напряжению: [pic] (4.2) где S – облучаемая площадь фоторезистора, Gф – фотопроводимость, [pic]– световой поток. Интегральная чувствительность выражается в микро- или миллиамперах на вольт-люмен (мкА/В(лм, мА/В(лм). С ростом освещенности величина интегральной чувствительности уменьшается, так как световая характеристика Iф(E) имеет зону насыщения. Недостатками фоторезисторов являются значительная зависимость
сопротивления от температуры, характерная для полупроводников, и большая
инерционность, связанная с большим временем рекомбинации электронов и дырок
после прекращения облучения. Постоянная времени ( различных типов
фоторезисторов колеблется в пределах 4(10-5 …3(10-2 с. Так, для
фоторезисторов марок ФС-КО, ФС-К1 ( = 2(10-2 с, для ФС-А1 – ( = 4(10-2 с. 2. Описание экспериментальной установки Фоторезистор (рис. 4.4) состоит из диэлектрической пластины 1, на которую нанесен слой светочувствительного полупроводникового вещества 2. С противоположных сторон этого слоя укреплены электроды 3. Для защиты от механических воздействий фоторезистор запрессовывается в пластмассовую оправу с прозрачным окном, штырьки которой соединены с его электродами. В лабораторной установке фоторезистор располагается внутри темновой камеры на специальной панели. Рядом размещается фотоэлемент, являющийся датчиком люксметра – прибора, измеряющего освещенность. В противоположном конце камеры на одинаковом расстоянии от фоторезистора и фотоэлемента помещен источник света с регулируемым световым потоком. Ручка регулятора потока расположена на лицевой панели установки. Там же указаны облучаемая площадь и темновое сопротивление фоторезистора. Для измерения сопротивления и тока фоторезистора используется универсальный цифровой вольтметр. Вольтамперные характеристики снимают по схеме рис. 2.5. 3. Порядок проведения работы. 1. Определение зависимости сопротивления фоторезистора от освещенности. Подготовить цифровой вольтметр к измерению сопротивлений, для чего переключатель рода работ установить в положение «R», предел измерения – «10 мОм». Подключить цифровой вольтметр к клеммам фоторезистора, расположенным на правой боковой панели лабораторной установки. Подать напряжение на стенд, переведя тумблер питания, расположенный на лицевой панели, в положение «Вкл». Изменяя освещенность регулятором на лицевой панели в соответствии со значениями в табл. 4.1, измерить и занести в табл. 4.1 сопротивление фоторезистора. Таблица 4.1 |E |лк |0 |5 |10 |25 |50 |75 |100 |125 |150 | 2. Снятие семейства вольтамперных характеристик фоторезистора. Собрать схему в соответствии с рис. 2.5. Подготовить цифровой
вольтметр к измерению тока, для чего переключатель рода работ поставить в
положение «мкА», предел измерения «100». Установить освещенность Е = 10 лк. Таблица 4.2 3. Определение зависимости интегральной чувствительности фоторезистора от величины освещенности. Зависимость Sи(E) определяется по схеме предыдущего опыта при неизменном значении напряжения U = 25 В. Результаты опыта и расчетов занести в табл. 4.3. Таблица 4.3 При расчете использовать формулы: [pic],[pic][pic] [pic] где h, S – соответственно толщина и площадь слоя сегнетоэлектрика. 1. Определение масштабов по осям экрана осциллографа. Переключатель П установить в положение «2». Вращением регулировочной рукоятки ЛАТРа, установить на входе цепи напряжение в пределах 40…60 В. На экране осциллографа должна наблюдаться наклонная прямая линия, представляющая кулон-вольтную характеристику Q(U) линейного диэлектрика конденсатора Со2. Занести в табл. 6.1 значения напряжения U и размаха колебаний луча осциллографа по горизонтали – (х и вертикали – (у. Таблица 6.1
Масштабы по осям координат определяются по следующим формулам: [pic] (6.5) 3. Определение потерь в сегнетоэлектрике при комнатной температуре. Устанавливая поочередно на входе цепи напряжение 60, 80, 120 В зарисовать на кальку осциллограммы петли гистерезиса. В табл. 6.3 занести координаты вершин гистерезисных циклов. Таблица 6.3 4. Оформление отчета Привести схему экспериментальной установки, данные измерительных приборов и
исследуемого элемента. Контрольные вопросы 1. Что называют сегнетоэлектриками? Какие материалы обладают сегнетоэлектрическими свойствами? Работа 7. Исследование свойств ферромагнитных материалов Цель работы – экспериментальное подтверждение основных теоретических положений, определяющих физические процессы, происходящие в ферромагнитных телах при их периодическом перемагничивании; приобретение практических навыков в определении потерь в ферромагнетике, их разделении, снятии основной кривой намагничивания B(H) и оценке магнитных характеристик материала. 1. Краткие сведения из теории Ферромагнитные материалы (Fe, Ni, Co и их сплавы) обладают особыми магнитными свойствами: высокое значение относительной магнитной проницаемости и ее сильная зависимость от напряженности внешнего магнитного поля, при перемагничивании наблюдается магнитный гистерезис, обусловленный наличием доменов – областей спонтанной намагниченности. Основной причиной магнитных свойств вещества являются внутренние скрытые формы движения электрических зарядов в его атомах – вращение электронов вокруг собственных осей (спиновый магнитный момент) и вокруг ядра (орбитальный магнитный момент). У ферромагнетиков даже при отсутствии внешнего магнитного поля имеются домены с параллельной или антипараллельной ориентацией спинов электронов. Такое вещество находится в состоянии спонтанного (самопроизвольного) намагничивания. В различных доменах эта ориентация различна. Если материал не подвергается воздействию внешнего магнитного поля, суммарный магнитный момент всех доменов и магнитный поток такого тела во внешнем пространстве равны нулю. При намагничивании внешним магнитным полем происходит поворот векторов магнитных моментов доменов в направлении поля и смещение границ доменов. С увеличением напряженности поля этот процесс замедляется (явление насыщения). При периодическом перемагничивании ферромагнитного материала наблюдается явление магнитного гистерезиса, т. е. отставание изменения магнитной индукции от изменения напряженности поля. На рис. 7.1 показаны гистерезисные диаграммы при различных предельных значениях напряженности внешнего магнитного поля. Кривая, проходящая через вершины этих диаграмм, называется основной кривой намагничивания B=f(H). Гистерезисный цикл, при котором достигается насыщение ферромагнитного материала, называется предельным. По нему определяется остаточная индукция Вr (при H = 0) и коэрцитивная сила Нc (при B = 0). Способность материала к намагничиванию характеризуется абсолютной магнитной проницаемостью ( = В/Н . (7.1) [pic] где МB, МH – масштабы по осям координат, ( – угол наклона к оси абсцисс прямой, соединяющей вершины частного гистерезисного цикла. Аналогично определяется дифференциальная магнитная проницаемость: [pic] (7.2) где ( – угол наклона касательной к основной кривой намагничивания в искомой точке. Для всех упомянутых проницаемостей чаще всего определяется их относительные значения [pic] [pic] [pic] (7.3) где (о = 4((10-7 Гн/м – магнитная постоянная. Материалы с узкой петлей гистерезиса (Hc ( 1 кА/м) называют магнитомягкими, материалы с широкой петлей – магнитотвердыми. При перемагничивании ферромагнитных материалов в них возникают потери на гистерезис и вихревые токи. При постоянной амплитуде индукции (Bm = const) потери на гистерезис пропорциональны частоте, а потери на вихревые токи – квадрату частоты: [pic] [pic] Измерив в этих условиях суммарные магнитные потери Pм1 и Рм2 при двух различных частотах, можно определить постоянные [pic] [pic] (7.4) Для выполнения условия Вm = сопst необходимо действующее значение напряжения намагничивающей катушки изменять пропорционально частоте (U1/f = const). Суммарные магнитные потери могут быть определены по площади [pic] динамической вебер-амперной диаграммы ((i): [pic] (7.5) где Mi, M( – масштабы, принятые по осям координат. Параллельная ориентация спинов в магнитных доменах имеет место только ниже определенной для данного ферромагнетика температуры – точки Кюри. При превышении этой температуры спонтанная намагниченность исчезает, и магнитная проницаемость резко падает. 2. Описание экспериментальной установки Схема установки для исследования свойств ферромагнитных материалов приведена на рис. 7.3. Схема питается от задающего генератора. Исследуемый ферромагнетик
представляет собой тороидальный магнитопровод с двумя обмотками. [pic] (7.6) где S – сечение сердечника, kо – постоянная, (1 – потокосцепление обмотки w1. Таким образом, на экране осциллографа можно наблюдать вебер-амперную характеристику (1(i). При этом масштабы по осям: [pic] [pic] (7.7) где (x, (y – размах осциллограммы по горизонтали и вертикали соответственно. Для измерения напряжений на резисторе R1 и на вторичной обмотке w2 применены цифровые вольтметры с большим входным сопротивлением. 3. Порядок выполнения работы 1. Определение масштабов осциллографа Mi, М( и магнитных потерь на частоте f = 50 Гц. Установить на входе цепи напряжение частотой 50 Гц, при котором на экране осциллографа наблюдается предельный гистерезисный цикл (когда дальнейшее увеличение входного напряжения не вызывает значительного роста индукции). Регулировкой усиления вертикального и горизонтального каналов осциллографа добиться, чтобы диаграмма заняла не менее 2/3 экрана. Занести в табл. 7.1 показания вольтметров V1, V2 и размах осциллограммы по горизонтали и вертикали, зарисовать осциллограмму на кальку. Площадь гистерезисного цикла S(i определяется непосредственным подсчетом числа квадратных миллиметров (по миллиметровой бумаге), укладывающихся внутри петли. Таблица 7.1 |Измерения |Расчет |Примечание | 4. Оформление отчета Привести схему исследований, данные приборов и исследуемого образца
ферромагнитного материала. Таблица 7.3 |f, Гц |Pст уд., |kг, Вт(с |kв, Вт(с2 |Pг, мВт |Pв, мВт | Сделать краткие выводы по работе. Контрольные вопросы 1. Какие материалы относят к классу ферромагнетиков? Рекомендуемая литература Корицкого и др. Л.: Энергия, 1974—1976. ----------------------- [pic] [pic] [pic] [pic] [pic] [pic] [pic] [pic] [pic] [pic] [pic] [pic] [pic] [pic] [pic] [pic] [pic]
|
|