1. • Исследование эффекта автодинного детектирования в ...
  2. • Исследование возможности использования эффекта ...
  3. • Варианты алгоритма возведения в степень: повышение точности и ...
  4. • Вычисление интеграла методом Ньютона-Котеса (теория и ...
  5. • Диплом: Эффект автодинного детектирования
  6. • Эквивалентность элементарных функций
  7. • Курсовая: Применение метода частотных круговых диаграмм
  8. • Разработка аппаратной части систем измерения скалярных ...
  9. • Эффект Ганна и его использование, в диодах, работающих в ...
  10. • Эффект Ганна и его использование, в диодах, работающих в ...
  11. • Разработка и исследование модели отражателя-модулятора ...
  12. • Расчетно-Графическая работа ППД КД213А
  13. • Радиоэлектронника
  14. • ПРОЕКТИРОВАНИЕ И КОНСТРУИРОВАНИЕ СВЧ ИНТЕГРАЛЬНЫХ УСТРОЙСТВ
  15. • Устройства СВЧ
  16. • Направленный ответвитель
  17. • Численный расчет диода Ганна
  18. • Определение оптимальных размеров датчика СВЧ поверхностных ...
  19. • Контрольная по прикладной СВЧ электронике

Реферат: Исследование эффекта автодинного детектирования в многоконтурном генераторе на диоде Ганна

Государственный комитет Российской Федерации по высшему образованию
Саратовский ордена Трудового Красного Знамени государственный университет им. Н.Г.Чернышевского

Кафедра физики твёрдого тела

ИССЛЕДОВАНИЕ ЭФФЕКТА АВТОДИННОГО ДЕТЕКТИРОВАНИЯ В МНОГОКОНТУРНОМ ГЕНЕРАТОРЕ

НА ДИОДЕ ГАННА

ДИПЛОМНАЯ РАБОТА студента 511 группы физического факультета

Каца Ефима Ильича

Научные руководители к.ф.-м.н., доцент

Скрипаль А.В., аспирант

Бабаян А.В.

Зав. кафедрой ФТТ профессор, академик МАН ВШ

Усанов Д.А.

г.Саратов - 1996 г.

Содержание.


| |Стр. |
|Введение |3 |
|1. Анализ возможности использования автодинов на |5 |
|полупроводниковых активных СВЧ-элементах для контроля | |
|параметров материалов и сред. | |
|2. Теоретическое исследование эффекта автодинного |12 |
|детектирования в многоконтурном генераторе на диоде Ганна.| |
| | |
|3. Экспериментальные исследования эффекта автодинного |20 |
|детектирования в многоконтурном генераторе на диоде Ганна.| |
| | |
|Заключение. |24 |
|Список литературы. |25 |
|Приложение. Текст программы для моделирования процессов в |28 |
|многоконтурном генераторе на диоде Ганна | |

Введение.

В связи с развитием современных технологий, требующих непрерывного контроля за многими параметрами технологического процесса, состоянием оборудования и параметрами материалов и сред становится всё более актуальной задача создания неразрушающих бесконтактных методов измерения и контроля параметров материалов и сред. Измерения на СВЧ позволяют определить электропроводность, толщину, диэлектрическую проницаемость и другие параметры материалов и сред без разрушения поверхности образца, дают возможность автоматизировать контроль параметров материалов. Для этого в настоящее время широко используются методы, основанные на использовании эффекта автодинного детектирования в полупроводниковых приборах.

Применение эффекта автодинного детектирования в полупроводниковых СВЧ- генераторах для контроля параметров материалов и структур основано на установлении зависимости величины продетектированного СВЧ-сигнала от параметров контролируемых величин: толщины, диэлектрической проницаемости, проводимости [1-6].

Однако, прежде чем создавать конкретный прибор на основе данного эффекта, необходимо провести моделирование его работы. Для этого необходимо рассмотреть принципы действия таких устройств.

При изменении уровня мощности СВЧ-излучения, воздействующего на полупроводниковые элементы с отрицательным сопротивлением, наблюдается изменение режима их работы по постоянному току, что можно понимать как проявление эффекта детектирования. В случае, если прибор с отрицательным сопротивлением является активным элементом СВЧ-генератора наблюдается эффект автодинного детектирования.

Одним из методов, позволяющих провести расчёт величины эффекта автодинного детектирования при реальных параметрах активного элемента и нагрузки, определить области значений контролируемых параметров материалов, в которых чувствительность автодина к их изменению максимальна, наметить пути оптимизации конструкции генератора, является метод, основанный на рассмотрении эквивалентной схемы СВЧ-генератора, в которой комплексная проводимость нагрузки определяется параметрами исследуемого материала и характеристиками электродинамической системы [7,9].

Целью дипломной работы являлось исследование эффекта автодинного детектирования в многоконтурных СВЧ-генераторах на диоде Ганна для создания измерителей параметров материалов, вибрации и выявления особенностей их работы.
1. Анализ возможности использования автодинов на полупроводниковых активных

СВЧ-элементах для контроля параметров материалов и сред.

При изменении уровня СВЧ-излучения, воздействующего на полупроводниковые элементы с отрицательным сопротивлением, наблюдается изменение постоянного тока, протекающего через них, что можно понимать как проявление эффекта детектирования [2,7]. Если прибор с отрицательным сопротивлением является активным элементом СВЧ-генератора, этот эффект называют эффектом автодинного детектирования.

Исследование эффекта автодинного детектирования в полупроводниковых
СВЧ-генераторах позволило создать устройства, совмещающие несколько радиотехнических функций в одном элементе (например, излучение и приём электромагнитных колебаний). Автодины на полупроводниковых генераторах, получившие к настоящему времени достаточно широкое применение, используются в основном для обнаружения движущихся объектов.

Важной областью применения автодинов является контроль параметров материалов и сред. Применение эффекта автодинного детектирования в полупроводниковых СВЧ-генераторах для контроля параметров материалов и сред основано на установлении зависимостей величины продетектированного СВЧ- сигнала от параметров контролируемых величин: диэлектрической проницаемости и проводимости. Измерения с помощью приборов основаны на сравнение с эталонами, а точность измерения в основном определяется точностью эталонирования.

Теоретическое обоснование возможности использования эффекта автодинного детектирования в диодных СВЧ-генераторах для контроля параметров материалов и сред проведено на основе численного анализа.
Описание отклика диодного СВЧ-автодина может быть сделано на основе рассмотрения эквивалентной схемы генератора (Рис. 1.1), в которой комплексная проводимость Yn определяется параметрами исследуемого материала и характеристиками электродинамической системы, а Yd - средняя проводимость полупроводникового прибора.

Yd Yn

Рис. 1.1. Эквивалентная схема автодина на полупроводниковом диоде.

Эта эквивалентная схема может быть описана соотношением (1.1), согласно первому закону Кирхгофа.

[pic] (1.1)

[pic] (1.2)
I1, U1 - комплексные амплитуды тока и напряжения первой гармоники на полупроводниковом элементе. Т.к. к обеим проводимостям приложено одно и то же напряжение U1, можно записать баланс мощностей:

[pic] (1.3)
Активная мощность на нагрузке (1.4) положительна

[pic] (1.4) отсюда вытекает, что

[pic] (1.5) т.е. Yd должна иметь отрицательную действительную часть при существовании в системе колебаний с ненулевой амплитудой. Наличие отрицательной проводимости характеризует трансформацию энергии: полупроводниковый элемент потребляет энергию постоянного тока и является источником колебаний ненулевой частоты.

Возникновение СВЧ-колебаний в электрической схеме с нелинейным элементом вследствие его детектирующего действия приводит к появлению дополнительной составляющей постоянного тока [pic], то есть возникает так называемый эффект автодинного детектирования [18]. Величина [pic] определяется из выражения

[pic] (1.6)

Детекторный эффект наблюдается в СВЧ-усилителях на биполярных транзисторах, СВЧ-генераторах на лавинно-пролётных диодах (ЛПД), инжекционно-пролётных диодах (ИПД), туннельных диодах (ТД) и диодах Ганна
(ДГ). В данной работе мы рассмотрим использование полупроводниковых диодов в качестве СВЧ-автодинов. Сравнительные характеристики полупроводниковых
СВЧ-диодов приведены в таблице 1.

Таблица 1.
|Диод |Мощность |КПД |Смещение |Шумы |
|ЛПД |десятки | | | |
| |ватт |до 15% |десятки Вольт |25 дБ |
|ИПД |десятки | |сотни | |
| |милливатт |единицы % |милливольт |около 5 дБ |
|ДГ |десятки |зависит от | | |
| |милливатт - |режима |4.5-11 Вольт |10-12 дБ |
| |единицы Ватт |работы | | |
|ТД |единицы и | |сотни | |
| |десятки |единицы % |милливольт |около 5 дБ |
| |микроватт | | | |

Процессы в полупроводниковых приборах описываются тремя основными уравнениями в частных производных [10]: уравнением плотности тока, характеризующим образование направленных потоков заряда; уравнением непрерывности, отражающим накопление и рассасывание подвижных носителей заряда, и уравнением Пуассона, описывающим электрические поля в полупроводнике.

Точное решение этих уравнений с учетом граничных условий в общем виде затруднительно даже на ЭВМ. Чтобы упростить анализ вводят эквивалентные схемы полупроводниковых приборов.

ТД представляют собой приборы, наиболее удобные для анализа, т.к. их эквивалентная схема более проста и точна, чем схемы других полупроводниковых приборов. С практической точки зрения ТД представляет собой интерес при создании маломощных автодинов в коротковолновой части сантиметрового диапазона.

ИПД (BARITT) обладает малой генерируемой мощностью [11], но из-за низкого уровня шумов и малого напряжения питания являются перспективными для допплеровских автодинов.

В работе [12] исследована возможность измерения диэлектрической проницаемости материалов по величине продетектированного работающем в режиме генерации ЛПД сигнала. Использовался генератор волноводной конструкции (канал волновода 23*10 мм.) с ЛПД типа АА707, установленным в разрыве стержневого держателя. Измерения продетектированного сигнала проводилось компенсационным методом. Исследуемые диэлектрики, с предварительно определёнными значениями диэлектрической проницаемости на
СВЧ, прикладывались к отверстию на выходном фланце генератора.

Результаты проведённых исследований показали, что ход зависимости величины продетектированного сигнала от диэлектрической проницаемости зависит от конструкции измерительного генератора, в частности, от расстояния от плоскости расположения ЛПД до открытого конца волновода, к которому прикладывается исследуемых диэлектрик.

ЛПД обеспечивает наибольшие КПД и мощность колебаний. Однако,, в качестве недостатка можно отметить относительно высокий уровень шумов, обусловленный, в первую очередь, шумами лавинообразования.

В ряде работ [2,3,17,18] рассматривается возможность применения СВЧ- генераторов на диоде Ганна для измерения параметров материалов и сред.
Отмечается преимущество данного способа измерения: исследуемый образец находится под воздействием СВЧ-мощности, а регистрация измерений производится на низкочастотной аппаратуре, имеющей высокую точность и отличающейся простой в эксплуатации.

В настоящее время разработаны и изготовлены устройства для неразрушающего контроля, принцип действия которых основан на эффекте автодинного детектирования: измерители толщины металлодиэлектрических структур и диэлектрической проницаемости [19,20]. Наибольшее практическое применение из разработанных приборов нашёл СВЧ толщиномер типа СИТ-40. На рисунке 1.2 приведена его блок-схема.

4

Рис. 1.2. Блок-схема СВЧ измерителя толщины.

В состав СВЧ толщиномера СИТ-40, предназначенного для измерения тонких плёнок из любого металла на изолирующей подложке и непроводящих покрытиях, в том числе разнообразных лакокрасочных, нанесённых на металлические поверхности, входит: 1 - СВЧ-датчик, представляющий собой СВЧ- генератор в микрополосковом исполнении и использующий в качестве активного элемента диод Ганна или СВЧ биполярный транзистор; 2 - предварительный усилитель; 3 - блок питания; 4 - система корректировки нуля; 5 - блок индикации.

Для уменьшения влияния дрейфа нуля на результат измерений предложены схемные решения, основанные на компенсации дрейфа его параметров в промежутках между измерениями и использовании напряжения в момент, предшествующий измерению, в качестве опорного в момент измерения [21].

С целью повышения чувствительности и существенного уменьшения веса и потребляемой мощности измерителей исследовалась возможность применения туннельных диодов в качестве активных элементов СВЧ-автодинов [22].
Исследования проводились в экспериментальных измерительных СВЧ-устройствах на серийных диодах типа ГИ 103Б, работавших на частоте 1.3 Ггц. В качестве детекторных диодов использовались диоды типа Д405. Конструктивно датчики измерительных устройств представляли собой отрезки полосковых линий передачи, выполненных на основе фольгированного фторопласта, в которых размещались генераторные и детекторные диоды, фильтры, НЧ и подстроечные элементы.

Разработаны устройства измерения толщины и электропроводности проводящих покрытий, а также толщины и диэлектрической проницаемости для изолирующих материалов. Принцип действия автодинного генератора на полупроводниковом СВЧ-элементе был использован при разработке нового способа контроля толщины плёнок в процессе вакуумного напыления. Для повышения точности измерения в датчике применён СВЧ-выключатель, обеспечивающий кратковременное отклонение генератора от измеряемого объекта
[23].

Разработан новый способ радиоволнового контроля вибраций, основанный на использовании двух полупроводниковых СВЧ-генераторов, работающих в режиме автодинного детектирования и обеспечивающих возможность определения не только амплитуды, но и частоты вибраций [24]. Источники зондирующего СВЧ- излучения и одновременно приёмники провзаимодействующего с вибрирующим объектом сигналов представляют собой отрезки стандартных прямоугольных волноводов, которые с одного конца закорочены и имеют регулируемые подстроечные поршни, а другие концы соединены с камерами, изготовленными из металлической ленты, свёрнутой в кольцо. Связь по СВЧ-полю отрезков волновода с каждой камерой осуществляется через прямоугольное волноводное окно. В камерах помещается цилиндрический металлический стержень, перемещение которого внутри этих камер вызывает изменение продетектированного автодинами зондирующего СВЧ-сигнала.

Применение в автодинных генераторах диодов Ганна по сравнению с генераторами, использующими другие полупроводниковые активные элементы, позволяет обеспечить преимущества по совокупности таких параметров, как максимальная рабочая частота, выходная мощность, стабильность частоты, потребляемая мощность питания [13].

2. Теоретическое исследование эффекта автодинного детектирования в многоконтурном генераторе на диоде Ганна.

В данной работе проводилось математическое моделирование процессов, происходящих в многоконтурном автодине на диоде Ганна. Для этого была составлена эквивалентная схема автодина (Рис. 2.1).

Теоретическое описание характеристик выходного сигнала СВЧ- генератора на диоде Ганна основывалось на математическом описании процессов в многоконтурной эквивалентной схеме, элементы которой моделируют полупроводниковую структуру диода Ганна в виде параллельно соединённых ёмкости С3 и активного нелинейного сопротивления, определяемого по ВАХ диода I(U), элементы корпуса диода L3 , C4 , СВЧ-резонатор в виде последовательного C2 , L2 и параллельного L1 , Y1 , C1 контуров, низкочастотную часть схемы, состоящую из последовательного L7 , C6 и параллельного C7 , R5 , L6 контуров, дросселя L5 в цепи питания, шунтирующей ёмкости С5 и индуктивности связи L4 диода с НЧ-схемой.

Эквивалентная схема описывается системой из четырнадцати дифференциальных уравнений (2.1-2.14), составленных на основе законов
Кирхгофа.

[pic] (2.1-2.4)

Эквивалентная схема автодина на диоде Ганна.

[pic]

Рис. 2.1.

[pic]

[pic] (2.4-2.14)

[pic]

Эта система нелинейна и решалась численно методом Рунге-Кутта четвёртого порядка с автоматическим выбором шага [16]. При расчёте использовалась типичная ВАХ диода Ганна [15], которая аппроксимировалась выражением вида:

[pic], (2.15)

где D=0, при UЈUn , D=2, при U>Un , m0 =6000 см2/Вс, VS=8.5 *106 см/с.
Выражение (2.15) было программно модифицировано для случая ВАХ с гистерезисом. График использованной ВАХ диода Ганна приведён на рисунке
2.2.

Вольт-амперная характеристика диода Ганна.

[pic]

Рис. 2.2.
При решении системы учитывалась частотная зависимость СВЧ- нагрузки. По результатам решения системы (2.1-2.14) вычислялись мощности сигналов Pсвч ,
Pнч и величины продетектированных сигналов DUfg и DUkg в СВЧ- и НЧ-цепях соответственно:

[pic] (2.16)

[pic] (2.17)

[pic] (2.18)

[pic], (2.19) где I70 - постоянный ток через диод Ганна в отсутствии генерации.

Нагрузка с волноводной системой была представлена в виде линии, нагруженной на комплексную проводимость отражающей поверхности (Рис.2.3).

[pic] [pic]

Рис. 2.3. Представление нагрузки в виде нагруженной линии.

Комплексная проводимость нагрузки [pic] была выражена через коэффициент отражения волны от объекта (нагрузки). Для этого была решена система уравнений:

[pic] (2.20)

[pic] (2.21) где [pic]ПАД и [pic]ПАД - комплексные напряжение и ток падающей волны,
[pic]ОТР и [pic]ОТР - комплексные напряжение и ток отражённой волны.
Коэффициент отражения представляет собой отношение амплитуд отражённой и падающей волн

[pic] (2.22)

В результате решения системы уравнений (2.20-2.21) было получено выражение для комплексной проводимости нагрузки

[pic], (2.23) где Z0 - волновое сопротивление пустого волновода,

[pic], (2.24) где [pic]-частота генератора, [pic]-магнитная проницаемость, [pic]- магнитная постоянная, [pic]-фазовая постоянная, l - расстояние до объекта.

Для подстановки в систему (2.1-2.14) комплексная проводимость нагрузки (2.23) была представлена в виде действительной и мнимой компонент.

[pic] (2.25)

[pic] (2.26)

С учётом (2.25) и (2.26) параметры эквивалентной схемы СВЧ-нагрузки рассчитывались из соотношений:

[pic] (2.27)

[pic] (2.28)

[pic] (2.29) где [pic], если Im(Z)0.

При расчёте величины продетектированного сигнала не учитывался вклад гармонических составляющих СВЧ-сигнала, с частотами равными 4f0, 5f0 и т.д., мощность которых составляла менее 1% мощности выходного сигнала СВЧ- генератора. Здесь f0 - частота основной гармоники выходного сигнала.
Результаты теоретического расчёта величин продетектированных сигналов DUfg и DUkg в СВЧ- и НЧ- цепях соответственно представлены на рисунке 2.4.

Теоретический расчёт показал, что изменение положения короткозамыкающего поршня в СВЧ-тракте наряду с изменением мощности СВЧ- колебаний приводит к изменению амплитуды колебаний в низкочастотном контуре, что позволяет регистрировать наряду с сигналом автодетектирования в цепи питания по постоянному току сигнал внешнего детектирования как на частотах СВЧ-диапазона, так и в низкочастотном диапазоне. Как следует из результатов расчёта, на представленных зависимостях наблюдаются локальные максимумы и минимумы, которые обусловлены наличием в спектре выходного сигнала СВЧ-генератора на диоде Ганна высших гармоник.

Математическое моделирование процессов в генераторе на диоде Ганна позволило установить, что существование областей значений входных сопротивлений СВЧ-нагрузки, в которых их изменение вызывает изменение продетектированных в СВЧ- и НЧ-цепях сигналов одинакового знака, и областей, в которых изменения продетектированных сигналов имеют противоположные знаки, обусловлено наличием значительной реактивной составляющей СВЧ-тока в полупроводниковой структуре диода Ганна. В то же время отметим, что изменение реактивных элементов НЧ-контура более, чем на два порядка приводит лишь к незначительному (не более 5%) смещению границ этих областей.

Теоретические зависимости величин продетектированных сигналов в СВЧ DUfg

(1) и НЧ DUkg (2) цепях.

[pic]

Рис. 2.4.

3. Экспериментальные исследования эффекта автодинного детектирования в многоконтурном генераторе на диоде Ганна.

Использование эффекта автодинного детектирования в полупроводниковых
СВЧ-генераторах позволяет создавать простые в эксплуатации малогабаритные измерители толщины и диэлектрической проницаемости [17,18]. Для их нахождения используют результаты измерений на нескольких частотах.
Осуществление многопараметрового контроля упрощается, если удаётся проводить измерения в условиях, когда на результаты измерений определяющим образом влияет только один из искомых параметров. Такая ситуация, в частности реализуется, если для измерения толщины и диэлектрической проницаемости диэлектриков в этом случае применяются измерители, работающие на различных частотных диапазонах, например СВЧ и НЧ. При проведении измерений на СВЧ результат зависит как от толщины, так и от диэлектрической проницаемости диэлектрика. Если измерения на НЧ проводить используя схему, в которой диэлектрик помещается в зазор между излучателем и металлическим основанием, то результат измерений будет определяться только толщиной диэлектрика и не будет зависеть от его диэлектрической проницаемости.
Определив таким образом толщину диэлектрика, по её значению и показателям преобразователя на СВЧ можно определить диэлектрическую проницаемость.

Было проведено экспериментальное исследование зависимости величины продетектированного сигнала в автодинном генераторе на диоде Ганна, работающем в различных частотных диапазонах от положения СВЧ короткозамыкающего поршня. Использовался генератор волноводной конструкции с диодом типа АА703[1], помещённым в разрыв металлического стержневого держателя. К цепи питания диода Ганна через разделительный конденсатор параллельно диоду был подключен низкочастотный контур. Частота СВЧ- колебаний составляла ~10 ГГц, частота низкочастотных колебаний ~10 МГц. Для детектирования низкочастотных колебаний

Схема экспериментальной установки.

Рис. 3.1. использовался диод типа КД503А[2]. Для контроля СВЧ-колебаний использовался измеритель мощности типа Я2М-66. Кроме того, в ходе экспериментальных исследований регистрировался постоянный ток, протекающий через диод Ганна, по падению напряжения на резисторе с сопротивлением порядка 1 Ом, включённом в цепь питания диода Ганна.

Схема экспериментальной установки приведена на рисунке 3.1. Она включает в себя источник питания СВЧ-выключателя 1 для раздельного воздействия сигналами СВЧ и НЧ, источник питания диода Ганна 2, схему обработки информации и индикации 3, детекторный диод 4, разделительный конденсатор 5, СВЧ-выключатель 6, диод Ганна 7, конденсатор низкочастотного колебательного контура 8 и катушку индуктивности 9, располагающейся на поверхности выходного фланца волновода.

В результате экспериментальных исследований было обнаружено, что в режиме многочастотной генерации изменение нагрузки в СВЧ-цепи (т.е. изменение положения короткозамыкающего поршня) приводит к изменению сигнала, продетектированному в НЧ-цепи, а изменение нагрузки в НЧ-цепи
(т.е. изменение индуктивности или ёмкости) приводит к изменению сигнала в
СВЧ-цепи. При этом изменения продетектированных в этих цепях сигналов могут быть как одинакового, так и противоположного знаков. Как следует из результатов, приведённых на Pис. 3.2, зависимости величины продетектированных в НЧ- и СВЧ-цепях сигналов DUнч и DIсвч от перемещения короткозамыкающего поршня периодичны и имеют локальные максимумы и минимумы. На этом же рисунке приведена зависимость мощности выходного сигнала РCВЧ СВЧ- генератора на диоде Ганна от перемещения короткозамыкающего поршня.

Зависимости величины продетектированных в НЧ (1) и СВЧ (2) цепях сигналов и зависимость мощности выходного сигнала (3) от положения короткозамыкающего поршня.

[pic]

Рис 3.2.

Заключение.

При выполнении дипломной работы были получены следующие результаты:

1. Проведен анализ современного состояния проблемы измерения параметров материалов и структур с помощью эффекта автодинного детектирования.

2. Построена теоретическая модель многоконтурного автодинного генератора на диоде Ганна, разработана и описана эквивалентная схема.

3. На основе построенной модели составлена программа для расчета параметров многоконтурного генератора на диоде Ганна.

4. Проведено компьютерное моделирование работы многоконтурного автодина на диоде Ганна.

5. Теоретически и экспериментально исследованы особенности проявления эффекта автодинного детектирования в многоконтурном генераторе на диоде
Ганна с низкочастотным колебательным контуром в цепи питания. Обнаружено, что изменение нагрузки в СВЧ- и НЧ-цепях могут вызывать изменение продетектированных в этих цепях сигналов как одинакового, так и противоположного знаков.

Установлено, что наблюдавшиеся экспериментально локальные максимумы и минимумы на зависимостях продетектированного сигнала от изменения нагрузки в СВЧ-цепи обусловлены наличием в спектре выходного сигнала СВЧ-генератора на диоде Ганна высших гармоник.

Литература.

1. Альтшулер Ю. Г., Сосунов В. А., Усов Н. В. Измерение малых амплитуд механических перемещений с применением открытого СВЧ резонатора //
Известия ВУЗов. - Радиоэлектроника. - 1975. - Т.18. - №10. - С.93-98.
2. Усанов Д.А., Авдеев А.А. Использование эффекта автодинного детектирования в генераторах на диодах Ганна для двухпараметрового измерения диэлектриков // Дефектоскопия.- 1995. - №4. - С.42-45.
3. Усанов Д.А., Тупикин В.Д., Скрипаль А.В., Коротин Б.Н. Использование эффекта автодинного детектирования в полупроводниковых СВЧ генераторах для создания устройств радиоволнового контроля // Дефектоскопия. - 1995.
- №5. - С.16-20.
4. Зак Е. Когерентные световые методы измерения параметров механических колебаний // Зарубежная радиоэлектроника. - 1975. - №12. - С. 70-76.
5. Викторов В. А., Лункин Б. В., Совлуков А. С. Радиоволновые измерения параметров технологических процессов, - М.: Энергоиздат. - 1989.
6. Коломойцев Ф. Н., Быстряков Н. П., Снежко Е. М., Налча Г. И., Харагай А.
С. СВЧ установка для измерения вибраций // Измерительная техника. - 1971.
- №11. - С. 45-46.
7. Коган И. М., Тамарчак Д. Я., Хотунцев Ю. Л. Автодины // Итоги науки и техники. - Радиоэлектроника. - 1984. - Т.33. - С. 3-175.
8. Коротов В. И., Хотунцев Ю. Л. Энергетические характеристики допплеровских автодинов на полупроводниковых приборах // Радиотехника и электроника. - 1990. - Т.35. - №7. - С. 1514-1517.
9. Хотунцев Ю.Л., Тамарчак Д.Я. Синхронизированные генераторы и автодины на полупроводниковых приборах. М.: Радио и связь, - 1982. - 240 с.
10. Шокли В. Теория электронных полупроводников. Пер. с англ. / под ред.
Жузе. - М.: Иностранная литература. - 1953. -С. 558.
11. Еленский В. Г. Инжекционно - пролетные диоды с проколом базы, BARITT - диоды // Зарубежная радиоэлектроника. - 1977. - №11. - С.98-103.
12. Усанов Д.А., Вагарин А.Ю., Безменов А.А. Об использовании детекторного эффекта в генераторах на ЛДД для измерения диэлектричекой проницаемости материалов // Дефектоскопия. - 1981. - №11. - С.106-107.
13. Усанов Д. А., Горбатов С. С., Семенов А. А. Изменение вида вольт - амперной характеристики диода Ганна в зависимости от режима его работы на
СВЧ // Известия ВУЗов. - Радиоэлектроника. - 1991. - Т.34. - №5. - С.107-
108.
14. Васильев Д. В., Витель М. Р., Горшенков Ю. Н. и др. Радиотехнические цепи и сигналы / под ред. Самойло К. А. - М.: Радио и связь. - 1982.
15. Murayama K., Ohmi T. Static Negative Resistance in Highly Doper Qunn
Diodes and Application for Switching and Amplification // Japan. J. Appl.
Phys. 1973. V.12. №12. P.1931.
16. Эберт К., Эдерер Х. Компьютеры. Применение в химии. Пер. с нем. - М.:
Мир, - 1988. - 416 с.
17. Усанов Д.А., Вагарин А.Ю., Вениг С.Б. Использование детекторного эффекта в СВЧ генераторе на диоде Ганна для измерения параметров диэлектриков // Дефектоскопия. - 1985. - №6. - С.78-82.
18. Усанов Д.А., Скрипаль А.В. Эффект автодинного детектирования в генераторах на диодах Ганна и его использование для контроля толщины и диэлектрической проницаемости материалов / Изв. ВУЗов. -
Радиоэлектроника. - 1987. - Т.30. - №10. - С.76-77.
19. Усанов Д.А., Безменов А.А., Коротин Б.Н. Устройство для измерения толщины диэлектрических плёнок, напыляемых на металл / ПТЭ. - 1986. - №4.
- С.227-228.
20. Усанов Д.А., Коротин Б.Н. Устройство для измерения толщины металлических плёнок, нанесённых на диэлектрическую основу / ПТЭ. - 1985.
- №1.- С.254.
21. Усанов Д.А., Вагврин А.Ю., Коротин Б.Н. Устройство для измерения параметров диэлектрических материалов. Авт. свид. №1161898. - Бюл. изобр.
- 1985. - №22. - С.184-185.
22. Усанов Д.А., Тупикин В.Д., Скрипаль А.В., Коротин Б.Н. Радиоволновые измерители на основе эффекта автодинного детектирования в полупроводниковых СВЧ генераторах / Тез. докл. Всесоюзной научно- технической конференции “Оптические, радиоволновые и тепловые методы и средства неразрушающего контроля качества промышленной продукции”. -
Саратов: Изд. СГУ. - 1991. - С.4-6.
23. Усанов Д.А., Скрипаль А.В., Коротин Б.Н., Лицов А.А., Гришин В.К.,
Свирщевский С.Б., Струков А.З. Устройство для измерения параметров диэлектрических материалов. Авт. свид. №1264109. - Бюлл. изобр. - 1986. -
№38. - С.138.
24. Усанов Д.А., Скрипаль А.В., Орлов В.Е, Гришин В.К., Левин М.Н., Ефимов
В.П. Способ измерения амплитуды вибраций осе симметричных объектов. Авт. свид. №1585692. - Бюлл. изобр. - 1990. - №30. - С.204.
25. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. Пер. с амер. / под ред. Арамаковича И. Г. - М.:Наука. - 1973.
- 831 с.
26. Будак Б. М., Фомин С. В. Кратные интегралы и ряды. - М.:Наука. - 1965.
- 608 с.
27. Маккракен Д., Дорн У. Численные методы и программирование на ФОРТРАНе.
Пер. с англ. / под ред. Наймарка Б. М. - М.:Мир. - 1977. - 584 с.
Приложение. Текст программы для моделирования процессов в многоконтурном генераторе на диоде Ганна.

{$A+,B-,D-,E-,F-,G-,I+,L+,N+,O-,P-,Q-,R-,S+,T-,V+,X+}

program gist_f3;

uses crt,graph,AN; label 1,2; const n=15;

q1=1.6e-19; n123=1e21; c2=0.03e-12; s123=1e-8; c3=0.3e-12; mm1=0.6; c4=0.8e-12;

Lg=1e-5; c5=10e-12; { отсечение НЧ цепи }

Eb=4e5; c6=1e-6;

T10=300.0; c7=15e-12; r1=0.01; l2=0.2e-9; r3=1; l3=0.6e-9; r4=0.0005; l4=0.01e-9; { крутим } r5=100; l5=100e-9;

Eds=3.8; l6=35e-9; l7=0.12e-9;

ll0=0.03; {sm} llk=0.046; maxpoint=1000000000; z0=39.43e3;

Type FL=EXTENDED;
Type ry=array[1..1100]of FL;
Type tt=array[1..N]of FL;

var sign,g1,sign1,sign2,sign3:ry; oldy1,oldy:array[1..10] of integer;

K1,y,f,w:tt;

delta_i,frequency,old_f,old_cur,di,oldc1,oldc2,c1,l1, sign0,d_visir,bn,iv1,iv11,iv12,x,h,vp1,smax,f0,s0,Vs,Vs1, y1,s1,ppp:FL;

mark,count,fcount,point,deltax,fsign,gd,oldx,oldx1,dh,dj, visir_1,visir_2,visir_3,visir_4,k,aaa,i,ii,iii,phas_x, phas_y:integer;

round,fpoint,iii1,loop:longint;

visir_f,visir_f1,visir_s,power,size_x,size_y:real;

c:char;

P: Pointer;

Size: Word; s:string;


Procedure current; var U:real; { BAX } begin

Vs:=eds/(Eb*Lg);

Vs1:=Vs*Vs*Vs;

Vs:=(1+0.265*Vs1/(1-T10*5.3E-4))/(1+Vs1*Vs);

Vs:=1.3E7*Eds*Vs/T10; if y[3]3.6 then u:=y[3]+2 else begin if f[3]>0 then u:=y[3] else u:=y[3]+2; end; iv12:=sqr(sqr(u/eb/Lg)); iv11:=mm1*u/Lg+vs*iv12; iv1:=q1*n123*s123*iv11/(1+iv12); end;

procedure kzp; { КЗП } var ll2:FL; begin l1:=0.2e-9; c1:=0.1e-12;

llv:=ll0/sqrt(1-sqr(ll0/llk));

z:=z0*Sin(6.28*lll/llv)/Cos(6.28*lll/llv);

if z=visir_f1) then begin if (visir_f10) then begin setcolor(0); outtextxy(540,75,'___________'); setcolor(13); line(540,70,620,70); str((visir_f/visir_f1):5:3,s); outtextxy(540,75,s); end; end else begin if (visir_f0) then begin setcolor(0); outtextxy(540,75,'___________'); setcolor(13); str((visir_f1/visir_f):5:3,s); outtextxy(540,75,s); end; end; end;

procedure v12; { вывод информации физиров 1 и 2 } begin d_visir:=1e-9*abs(visir_2-visir_1)*(xmax-xmin)/(xgmax- xgmin);

setcolor(0); outtextxy(540,255,'___________'); outtextxy(540,35,'___________');

setcolor(15);

if(d_visir0) then begin an2; line(trunc(visir_s),ygmin,trunc(visir_s),ygmax); visir_s:=xgmax-trunc((xmax-1/(d_visir*1e9))*(xgmax- xgmin)/(xmax-xmin)); line(trunc(visir_s),ygmin,trunc(visir_s),ygmax); str((1e-9/d_visir):5:3,s); outtextxy(540,35,s+' GHz');

end;

str(d_visir*1e9:5:4,s); outtextxy(540,255,s+' ns');

end;

BEGIN oldc1:=0; oldc2:=0; gd:=0;

InitGraph(gd,gm,'E:tp-7bgi'); an2; scal; an4; scal; an3; scal;

setcolor(11); current; kzp;

{ Начальные условия }

dh:=4; dj:=2; x:=0; h:=8e-13; y[1]:=eds; w[1]:=eds; y[3]:=eds; y[6]:=iv1; w[3]:=eds; w[6]:=iv1; y[2]:=eds; y[7]:=iv1; w[2]:=eds; w[7]:=iv1; y[5]:=eds; y[8]:=iv1; w[5]:=eds; w[8]:=iv1; y[4]:=eds; y[6]:=iv1; w[4]:=eds; w[6]:=iv1; y[11]:=eds; y[10]:=0; y[9]:=iv1; w[9]:=iv1; w[11]:=eds; w[10]:=0; y[12]:=0; w[12]:=y[12]; y[13]:=eds; w[13]:=y[13]; y[14]:=0; w[14]:=y[14]; y[15]:=0; w[15]:=y[15];

loop:=1; { номеp pазвеpтки тока } phas_x:=0; phas_y:=0; { сдвиг фазового поpтpета } size_x:=1;size_y:=1; { масштаб фазового портрета }

an2; visir_s:=800; visir_3:=xgmin; visir_f:=0; visir_4:=xgmin; visir_f1:=0; an3; visir_1:=xgmin; visir_2:=xgmin; { визиры } count:=1; mark:=0; round:=0; old_cur:=iv1; fcount:=0; fsign:=1; fpoint:=1; frequency:=1e10; old_f:=1e10;

Smax:=0; power:=0;

oldx:=xgmax-trunc((xmax-0)*(xgmax-xgmin)/(xmax-xmin)); for aaa:=1 to 10 do oldy[aaa]:=ygmin-trunc((ymax-y[8]*10)*(ygmin- ygmax)/(ymax-ymin));

{ Рунге-Кутт }

for iii1:=-249 to maxpoint do begin for iii:=0 to 4 do begin anna(y,f); for k:=1 to n do begin

K1[k]:=f[k]*h; y[k]:=w[k]+h*f[k]/2; end; x:=x+h/2; anna(y,f); for k:=1 to n do begin

K1[k]:=K1[k]+2*f[k]*h; y[k]:=w[k]+f[k]*h/2; end; anna(y,f); for k:=1 to n do begin

K1[k]:=K1[k]+2*f[k]*h; y[k]:=w[k]+f[k]*h; end; x:=x+h/2; anna(y,f); for k:=1 to n do begin y[k]:=w[k]+(K1[k]+f[k]*h)/6; w[k]:=y[k]; end; end;

{ вычисление мощности }

power:=power+y[8]*y[2];

{ вычисление частоты по изменению знака производной }

if fsign > 0 then begin if y[8]-old_cur = 0 then begin if fcount = 0 then fpoint:=iii1; fcount:=fcount+1; fsign:=1; end; end; old_cur:=y[8];

if fcount = 15 then begin { Частота сигнала } fcount:=1; mark:=1; old_f:=frequency; frequency:=(iii1-fpoint)/(h*4.2e3 * 5); fpoint:=iii1;

power:=power *h*frequency/5; str(power:5:4,s); power:=0;

setcolor(0); outtextxy(250,460,' ');

setcolor(11); outtextxy(250,460,'Puhf = '+s+' W'); end;


{ вывод графиков токов и напряжений } if(iii1>0) then begin an3; if(iii1=loop*1000) then begin loop:=loop+1; setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); scal;

setwritemode(XORput); setcolor(15); line(visir_1,ygmin,visir_1,ygmax); line(visir_2,ygmin,visir_2,ygmax); setwritemode(COPYput); str(d_visir*1e9:5:4,s); outtextxy(540,255,s+' ns');

round:=round+1; setcolor(0); outtextxy(50,460,' '); str(round*4:6,s); setcolor(11); outtextxy(50,460,'time = '+s+' ns+');

oldx:=xgmax-trunc((xmax-0)*(xgmax- xgmin)/(xmax-xmin)); for aaa:=1 to 10 do oldy[aaa]:=ygmin-trunc((ymax- y[8]*10)*(ygmin-ygmax)/(ymax-ymin)); end;

bn:=x*1e9; y1:=y[1]-1; xg:=xgmax-trunc((xmax-bn)*(xgmax-xgmin)/(xmax- xmin)); xg:=xg-145-580*(loop-1); yg:=ygmin-trunc((ymax-y[8]*10)*(ygmin- ygmax)/(ymax-ymin)); setcolor(10); line(oldx,oldy[1],xg,yg); oldy[1]:=ygmin-trunc((ymax-y[8]*10)*(ygmin- ygmax)/(ymax-ymin));

{ yg:=ygmin-trunc((ymax-frequency/1e10)*(ygmin- ygmax)/(ymax-ymin)); setcolor(14); line(oldx,oldy[2],xg,yg); oldy[2]:=ygmin-trunc((ymax- frequency/1e10)*(ygmin-ygmax)/(ymax-ymin));
} yg:=ygmin-trunc((ymax-y1)*(ygmin-ygmax)/(ymax- ymin)); setcolor(13); line(oldx,oldy[3],xg,yg); oldy[3]:=ygmin-trunc((ymax-y1)*(ygmin- ygmax)/(ymax-ymin)); oldx:=xg; end;

{ phas. portret } if(iii1>0) then begin an4; di:=(y[8]-oldc1)*50*size_y; yg:=ygmax-trunc((ymax-di)*(ygmax-ygmin)/(ymax- ymin)); xg:=xgmin-trunc((xmax-y[8]*15*size_x)*(xgmin- xgmax)/(xmax-xmin)); putpixel(xg+phas_x,yg+phas_y,10); oldc1:=y[8];

if(iii1249) then begin
{ control circle } if (mark=1) then begin mark:=0; setcolor(14); circle(xg+phas_x,yg+phas_y,3); setcolor(10); end; end;


{ управление экраном }

if keypressed=true then begin c:=readkey; case c of
{ пеpемещение фаз. поpepета }

'1': begin an4; setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); end;

'4': begin phas_x:=phas_x-10; an4;

Size := ImageSize(xgmin+1, ygmin+1, xgmax-1, ygmax-1);

GetMem(P, Size);

GetImage(xgmin+1, ygmin+1, xgmax-1, ygmax-1, P^); setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1);

PutImage(xgmin+1-10, ygmin+1, P^,

NormalPut);

FreeMem(P, Size); scal; end;

'6': begin phas_x:=phas_x+10; an4;

Size := ImageSize(xgmin+1, ygmin+1, xgmax-1, ygmax-1);

GetMem(P, Size);

GetImage(xgmin+1, ygmin+1, xgmax-1, ygmax-1, P^); setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1);

PutImage(xgmin+1+10, ygmin+1, P^,

NormalPut);

FreeMem(P, Size); scal; end;

'2': begin phas_y:=phas_y+10; an4;

Size := ImageSize(xgmin+1, ygmin+1, xgmax-1, ygmax-1);

GetMem(P, Size);

GetImage(xgmin+1, ygmin+1, xgmax-1, ygmax-1, P^); setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1);

PutImage(xgmin+1, ygmin+1+10, P^,

NormalPut);

FreeMem(P, Size); scal; end;

'8': begin phas_y:=phas_y-10; an4;

Size := ImageSize(xgmin+1, ygmin+1, xgmax-1, ygmax-1);

GetMem(P, Size);

GetImage(xgmin+1, ygmin+1, xgmax-1, ygmax-1, P^); setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1);

PutImage(xgmin+1, ygmin+1-10, P^,

NormalPut);

FreeMem(P, Size); scal; end;
{ пеpеход на вычисление спектpа }

's': begin goto 1; end;
{ масштаб фаз. поpтpета }

'+': begin an4; setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); size_x:=size_x+0.1; size_y:=size_y+0.1; end;

'-': begin an4; setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); size_x:=size_x-0.1; size_y:=size_y-0.1; end;

end;
2: end; end;


{ спектр }

1: SETCOLOR(15); an2; f0:=0;

Smax:=0; sign0:=0; setcolor(15); for k:=1 to 200 do begin s0:=0;s1:=0;

FOR i:=1 to 500 do begin s0:=s0+(sign[i]-sign0)*cos(f0*i*6.28e-9/250); s1:=s1+(sign[i]-sign0)*sin(f0*i*6.28e-9/250); end; if k=1 then begin sign0:=s0/500; s0:=0; end; f0:=f0+2e8; g1[k]:=s0*s0+s1*s1; if g1[k]>Smax then Smax:=g1[k]; end; ppp:=s0*s0+s1*s1; f0:=0;

{ очистка поля и перерисовка визиров и цифр }

setfillstyle(0,0); bar(xgmin+1,ygmin+1,xgmax-1,ygmax-1); scal;

setwritemode(XORput); if(d_visir0) then begin line(trunc(visir_s),ygmin,trunc(visir_s),ygmax); str((1e-9/d_visir):5:3,s); outtextxy(540,35,s+' GHz'); end; line(visir_3,ygmin,visir_3,ygmax); setcolor(14); line(visir_4,ygmin,visir_4,ygmax); setwritemode(COPYput); setcolor(11); str(visir_f:5:3,s); outtextxy(540,50,s+' GHz'); setcolor(14); str(visir_f1:5:3,s); outtextxy(540,60,s+' GHz');

Result;
{ рисование спектра } moveto(xgmin,ygmax);setcolor(10); for k:=1 to 200 do begin xg:=xgmax-trunc((xmax-f0/1e9)*(xgmax-xgmin)/(xmax- xmin)); yg:=ygmin-trunc((ymax-100*g1[k]/SMAX)*(ygmin- ygmax)/(ymax-ymin)); lineto(xg,yg); f0:=f0+2e8; end;

{ конец спектра }

repeat c:=readkey; case c of
{ перемещение визиров }

'9': begin an3; setwritemode(XORput); setcolor(15);

line(visir_1,ygmin,visir_1,ygmax); visir_1:=visir_1+1;

line(visir_1,ygmin,visir_1,ygmax);

v12; setwritemode(COPYput); end;

'7': begin an3; setwritemode(XORput); setcolor(15);

line(visir_1,ygmin,visir_1,ygmax); visir_1:=visir_1-1;

line(visir_1,ygmin,visir_1,ygmax);

v12; setwritemode(COPYput); end;

'6': begin an3; setwritemode(XORput); setcolor(15);

line(visir_2,ygmin,visir_2,ygmax); visir_2:=visir_2+1;

line(visir_2,ygmin,visir_2,ygmax);

v12; setwritemode(COPYput); end;

'4': begin an3; setwritemode(XORput); setcolor(15);

line(visir_2,ygmin,visir_2,ygmax); visir_2:=visir_2-1;

line(visir_2,ygmin,visir_2,ygmax);

v12; setwritemode(COPYput); end;

'3': begin an2; setwritemode(XORput); setcolor(11);

line(visir_3,ygmin,visir_3,ygmax); visir_3:=visir_3+1;

line(visir_3,ygmin,visir_3,ygmax); visir_f:=(visir_3-xgmin)*(xmax- xmin)/(xgmax-xgmin);

setcolor(0); outtextxy(540,50,'___________');

setcolor(11); str(visir_f:5:3,s); outtextxy(540,50,s+' GHz');

setwritemode(COPYput);

Result; end;

'1': begin an2; setwritemode(XORput); setcolor(11);

line(visir_3,ygmin,visir_3,ygmax); visir_3:=visir_3-1;

line(visir_3,ygmin,visir_3,ygmax); visir_f:=(visir_3-xgmin)*(xmax- xmin)/(xgmax-xgmin);

setcolor(0); outtextxy(540,50,'___________');

setcolor(11); str(visir_f:5:3,s); outtextxy(540,50,s+' GHz');

setwritemode(COPYput);

Result;

end;

'.': begin an2; setwritemode(XORput); setcolor(14);

line(visir_4,ygmin,visir_4,ygmax); visir_4:=visir_4+1;

line(visir_4,ygmin,visir_4,ygmax); visir_f1:=(visir_4-xgmin)*(xmax- xmin)/(xgmax-xgmin);

setcolor(0); outtextxy(540,60,'___________');

setcolor(14); str(visir_f1:5:3,s); outtextxy(540,60,s+' GHz');

setwritemode(COPYput);

Result;

end;

'0': begin an2; setwritemode(XORput); setcolor(14);

line(visir_4,ygmin,visir_4,ygmax); visir_4:=visir_4-1;

line(visir_4,ygmin,visir_4,ygmax); visir_f1:=(visir_4-xgmin)*(xmax- xmin)/(xgmax-xgmin);

setcolor(0); outtextxy(540,60,'___________');

setcolor(14); str(visir_f1:5:3,s); outtextxy(540,60,s+' GHz');

setwritemode(COPYput);

Result;

end;

' ':begin goto 2; end; end; until (c='q'); end. { -= EOF =- }

В заключении хочу выразить благодарность доценту кафедры физики твёрдого тела Саратовского госуниверситета Скрипалю Александру
Владимировичу и аспиранту той же кафедры Бабаяну Андрею Владимировичу за оказанную помощь и внимательное отношение к выполнению дипломной работы.

-----------------------
[1] Справочная информация: PВЫХ=10 мВт, IПИК=270 мА, RПОТ=3-20 Ом., L=1.7 нГн., UПСТ=8.5 В., f=13 ГГц.
[2] Справочная информация: UОБР=30 В., IОБР=10 мкА., UПР=2.5 В.,

IПР/ИМП=0.02/0.2 А., f=350 МГц.

-----------------------
4

5

2

1

3

1

2

3

4

5

6

7

8

9

©2007—2016 Пуск!by | По вопросам сотрудничества обращайтесь в contextus@mail.ru