| |||
Реферат: Экологические проблемы энергетикиИнститут Транспорта и Связи [pic] Гражданская оборона Тема: Экологические проблемы энергетики Тип: Реферат Выполнил: Ситников Максим группа 3301 BN Дата сдачи на проверку: ______ ___ Дата возврата на доработку:______ ___ Зачет/не зачет Преподаватель: Л.Н. Загребина Рига-2004 Введение Существует образное выражение, что мы живем в эпоху трех «Э»: экономика, энергетика, экология. При этом экология как наука и образ мышления привлекает все более и более пристальное внимание человечества. Экологию рассматривают как науку и учебную дисциплину, которая призвана
изучать взаимоотношения организмов и среды во всем их разнообразии. При
этом под средой понимается не только мир неживой природы, а и воздействие
одних организмов или их сообществ на другие организмы и сообщества. Такую двустороннюю связь важно подчеркнуть в связи с тем, что это основополагающее положение часто недоучитывается: экологию сводят только к влиянию среды на организмы. Ошибочность таких положений очевидна, поскольку именно организмы сформировали современную среду. Им же принадлежит первостепенная роль в нейтрализации тех воздействий на среду, которые происходили и происходят по различным причинам. Концептуальные основы дисциплины. С момента появления «Экология»
развивалась в рамках биологии практически на протяжении целого века - до 60- В настоящее время термин «экология» существенно трансформировался. Она стала больше ориентированной на человека в связи с его исключительно масштабным и специфическим влиянием на среду. Сказанное позволяет дополнить определение «экологии» и назвать задачи, которые она призвана решать в настоящее время. Современную экологию можно рассматривать как науку, занимающуюся изучением взаимоотношений организмов, в том числе и человека, со средой, определением масштабов и допустимых пределов воздействия человеческого общества на среду, возможностей уменьшения этих воздействий или их полной нейтрализации. В стратегическом плане - это наука о выживании человечества и выходе из экологического кризиса, который приобрел (или приобретает) глобальные масштабы - в пределах всей планеты Земля. Становится все более ясным, что человек очень мало знает о среде, в которой он живет, особенно о механизмах, которые формируют и сохраняют среду. Раскрытие этих механизмов (закономерностей) - одна из важнейших задач современной экологии. Содержание термина «экология», таким образом, приобрело социально- политический, философский аспект. Она стала проникать практически во все отрасли знаний, с ней связывается гуманизация естественных и технических наук, она активно внедряется в гуманитарные области знаний. Экология при этом рассматривается не только как самостоятельная дисциплина, а как мировоззрение, призванное пронизывать все науки, технологические процессы и сферы деятельности людей. Признано поэтому, что экологическая подготовка должна идти, по крайней мере, по двум направлениям через изучение специальных интегральных курсов и через экологизацию всей научной, производственной и педагогической деятельности. Наряду с экологическим образованием существенное внимание уделяется экологическому воспитанию, с которым связывается бережное отношение к природе, культурному наследию, социальным благам. Без серьезного общеэкологического образования решение этой задачи также весьма проблематично. Между тем, став в своем роде модной, экология не избежала вульгаризации понимания и содержания. В ряде случаев экология становится разменной монетой в достижении определенных политических целей, положения в обществе. В разряд экологических нередко возводятся вопросы, относящиеся к
отраслям производства, видам и результатам деятельности человека, просто
если к ним добавляют модное слово «экология». Так появляются несуразные
выражения, в том числе и в печати, типа «хорошая и плохая экология», Несмотря на отмеченные неясности и издержки в понимании объема, содержания и использования термина «экология», несомненным остается факт ее крайней актуальности в настоящее время. В обобщенном виде экология изучает наиболее общие закономерности взаимоотношений организмов и их сообществ со средой в естественных условиях. Социальная экология рассматривает взаимоотношения в системе «общество - природа», специфическую роль человека в системах различного ранга, отличие этой роли от других живых существ, пути оптимизации взаимоотношений человека со средой, теоретические основы рационального природопользования. Проблемы энергетики Энергетика - это та отрасль производства, которая развивается невиданно быстрыми темпами. Если численность населения в условиях современного демографического взрыва удваивается за 40-50 лет, то в производстве и потреблении энергии это происходит через каждые 12-15 лет. При таком соотношении темпов роста населения и энергетики, энерговооруженность лавинообразно увеличивается не только в суммарном выражении, но и в расчете на душу населения. Нет основания ожидать, что темпы производства и потребления энергии в ближайшей перспективе существенно изменятся (некоторое замедление их в промышленно развитых странах компенсируется ростом энерговооруженности стран третьего мира), поэтому важно получить ответы на следующие вопросы: . какое влияние на биосферу и отдельные ее элементы оказывают основные виды современной (тепловой, водной, атомной) энергетики и как будет изменяться соотношение этих видов в энергетическом балансе в ближайшей и отдаленной перспективе; . можно ли уменьшить отрицательное воздействие на среду современных (традиционных) методов получения и использования энергии; . каковы возможности производства энергии за счет альтернативных (нетрадиционных) ресурсов, таких как энергия солнца, ветра, термальных вод и других источников, которые относятся к неисчерпаемым и экологически чистым. В настоящее время энергетические потребности обеспечиваются в основном за счет трех видов энергоресурсов: органического топлива, воды и атомного ядра. Энергия воды и атомная энергия используются человеком после превращения ее в электрическую энергию. В то же время значительное количество энергии, заключенной в органическом топливе, используется в виде тепловой и только часть ее превращается в электрическую. Однако и в том и в другом случае высвобождение энергии из органического топлива связано с его сжиганием, следовательно, и с поступлением продуктов горения в окружающую среду.
За счет сжигания топлива (включая уголь, дрова и другие биоресурсы) в
настоящее время производится около 90% энергии. Доля тепловых источников
уменьшается до 80-85% в производстве электроэнергии. При этом в промышленно
развитых странах нефть и нефтепродукты используются в основном для
обеспечения нужд транспорта. Например, в США (данные на 1995 г.) нефть в
общем энергобалансе страны составляла 44%, а в получении электроэнергии -
только 3%. Для угля характерна противоположная закономерность: при 22% в
общем энергобалансе он является основным в получении электроэнергии (52%). В мировом масштабе гидроресурсы обеспечивают получение около 5-6%
электроэнергии, атомная энергетика, дает 17-18% электроэнергии. Причем в
ряде стран она является преобладающей в энергетическом балансе (Франция - Сжигание топлива - не только основной источник энергии, но и важнейший поставщик в среду загрязняющих веществ. Тепловые электростанции в наибольшей степени «ответственны» за усиливающийся парниковый эффект и выпадение кислотных осадков. Они, вместе с транспортом, поставляют в атмосферу основную долю техногенного углерода (в основном в виде СО2), около 50% двуокиси серы, 35% - окислов азота и около 35% пыли. Имеются данные, что тепловые электростанции в 2-4 раза сильнее загрязняют среду радиоактивными веществами, чем АЭС такой же мощности. В выбросах ТЭС содержится значительное количество металлов и их соединений. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. кВт содержится алюминия и его соединений свыше 100 млн. доз, железа-400 млн. доз, магния -1,5 млн. доз. Летальный эффект этих загрязнителей не проявляется только потому, что они попадают в организмы в незначительных количествах. Это, однако, не исключает их отрицательного влияния через воду, почвы и другие звенья экосистем. Можно считать, что тепловая энергетика оказывает отрицательное влияние практически на все элементы среды, а также на человека, другие организмы и их сообщества. Вместе с тем влияние энергетики на среду и ее обитателей в большей мере зависит от вида используемых энергоносителей (топлива). Наиболее чистым топливом является природный газ, далее следует нефть (мазут), каменные угли, бурые угли, сланцы, торф. Хотя в настоящее время значительная доля электроэнергии производится за счет относительно чистых видов топлива (газ, нефть), однако закономерной является тенденция уменьшения их доли. По имеющимся прогнозам, эти энергоносители потеряют свое ведущее значение уже в первой четверти XXI столетия. Не исключена вероятность существенного увеличения в мировом
энергобалансе использования угля. По имеющимся расчетам, запасы углей
таковы, что они могут обеспечивать мировые потребности в энергии в течение Выбросы ТЭС являются существенным источником такого сильного канцерогенного вещества, как бензопирен. С его действием связано увеличение онкологических заболеваний. В выбросах угольных ТЭС содержатся также окислы кремния и алюминия. Эти абразивные материалы способны разрушать легочную ткань и вызывать такое заболевание, как силикоз. Серьезную проблему вблизи ТЭС представляет складирование золы и ишаков. Имеются данные, что если бы вся сегодняшняя энергетика базировалась на
угле, то выбросы СО, составляли бы 20 млрд. тонн в год (сейчас они близки к ТЭС - существенный источник подогретых вод, которые используются здесь как охлаждающий агент. Эти воды нередко попадают в реки и другие водоемы, обусловливая их тепловое загрязнение и сопутствующие ему цепные природные реакции (размножение водорослей, потерю кислорода, гибель гидробионтов, превращение типично водных экосистем в болотные и т. п.). Экологические проблемы гидроэнергетики Одно из важнейших воздействий гидроэнергетики связано с отчуждением
значительных площадей плодородных (пойменных) земель под водохранилища. В Ухудшение качества воды в водохранилищах происходит по различным причинам. В них резко увеличивается количество органических веществ как за счет ушедших под воду экосистем (древесина, другие растительные остатки, гумус почв и т. п.), так и вследствие их накопления в результате замедленного водообмена. Это своего рода отстойники и аккумуляторы веществ, поступающих с водосборов. В водохранилищах резко усиливается прогревание вод, что интенсифицирует
потерю ими кислорода и другие процессы, обусловливаемые тепловым
загрязнением. Последнее, совместно с накоплением биогенных веществ, создает
условия для зарастания водоемов и интенсивного развития водорослей, в том
числе и ядовитых синезеленых (цианей). По этим причинам, а также вследствие
медленной обновляемости вод резко снижается их способность к самоочищению. В конечном счете, перекрытые водохранилищами речные системы из
транзитных превращаются в транзитноаккумулятивные. Кроме биогенных веществ,
здесь аккумулируются тяжелые металлы, радиоактивные элементы и многие
ядохимикаты с длительным периодом жизни. Продукты аккумуляции делают
проблематичным возможность использования территорий, занимаемых
водохранилищами, после их ликвидации. Имеются данные, что в результате
заиления равнинные водохранилища теряют свою ценность как энергетические
объекты через 50-100 лет после их строительства. Например, подсчитано, что
большая Асуанская плотина, построенная на Ниле в 60-е годы, будет
наполовину заилена уже к 2025 году. Несмотря на относительную дешевизну
энергии, получаемой за счет гидроресурсов, доля их в энергетическом балансе
постепенно уменьшается. Это связано как с исчерпанием наиболее дешевых
ресурсов, так и с большой территориальной емкостью равнинных водохранилищ. Водохранилища оказывают заметное влияние на атмосферные процессы. Издержки гидростроительства для среды заметно меньше в горных районах, где водохранилища обычно невелики по площади. Однако в сейсмоопасных горных районах водохранилища могут провоцировать землетрясения. Увеличивается вероятность оползневых явлений и вероятность катастроф в результате возможного разрушения плотин. Так, в 1960 г. в Индии (штат Гунжарат) в результате прорыва плотины вода унесла 15 тысяч жизней людей.
Ядерная энергетика до недавнего времени рассматривалась как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. Достаточно отметить, что 0,5 кг ядерного топлива позволяет получать столько же энергии, сколько сжигание 1000 тонн каменного угля. До середины 80-х годов человечество в ядерной энергетике видело один из выходов из энергетического тупика. Только за 20 лет (с середины 60-х до середины 80-х годов) мировая доля энергетики, получаемой на АЭС, возросла практически с нулевых значений до 15-17%, а в ряде стран она стала превалирующей. Ни один другой вид энергетики не имел таких темпов роста. До недавнего времени основные экологические проблемы АЭС связывались с захоронением отработанного топлива, а также с ликвидацией самих АЭС после окончания допустимых сроков эксплуатации. Имеются данные, что стоимость таких ликвидационных работ составляет от 1/6 до 1/3 от стоимости самих АЭС. Некоторые параметры воздействия АЭС и ТЭС на среду представлены в таблице: Сравнение АЭС и ТЭС по расходу топлива и воздействию на среду. Мощность электростанций по 1000 мВт, работа в течение года; (Б. Небел, 1993) |Факторы воздействия на среду |ТЭС |АЭС | При нормальной работе АЭС выбросы радиоактивных элементов в среду крайне незначительны. В среднем они в 2-4 раза меньше, чем от ТЭС одинаковой мощности. К маю 1986г. 400 энергоблоков, работавших в мире и дававших более 17%
электроэнергии, увеличили природный фон радиоактивности не более чем на По различным данным, суммарный выброс продуктов деления от содержащихся в реакторе составил от 3,5% (63 кг) до 28% (50 т). Для сравнения отметим, что бомба, сброшенная на Хиросиму, дала только 740 г радиоактивного вещества. В результате аварии на Чернобыльской АЭС радиоактивному загрязнению
подверглась территория в радиусе более 2 тыс. км, охватившая более 20
государств. В пределах бывшего СССР пострадало 11 областей, где проживает После аварии на Чернобыльской АЭС отдельные страны приняли решение о
полном запрете на строительство АЭС. В их числе Швеция, Италия, Бразилия, В процессе ядерных реакций выгорает лишь 0,5-1,5% ядерного топлива. Неизбежный результат работы АЭС - тепловое загрязнение. На единицу получаемой энергии здесь оно в 2-2,5 раза больше, чем на ТЭС, где значительно больше тепла отводится в атмосферу. Выработка 1 млн. кВт электроэнергии на ТЭС дает 1,5 км3 подогретых вод, на АЭС такой же мощности объем подогретых вод достигает 3-3,5 км3. Следствием больших потерь тепла на АЭС является их более низкий
коэффициент полезного действия по сравнению с ТЭС. На последних он равен В целом можно назвать следующие воздействия АЭС на среду: . разрушение экосистем и их элементов (почв, грунтов, водоносных структур и т. п.) в местах добычи руд (особенно при открытом способе); . изъятие земель под строительство самих АЭС. Особенно значительные территории отчуждаются под строительство сооружений для подачи, отвода и охлаждения подогретых вод. Для электростанции мощностью 1000 МВт требуется пруд-охладитель площадью около 800-900 га. Пруды могут заменяться гигантскими градирнями с диаметром у основания 100- 120 м и высотой, равной 40-этажному зданию; . изъятие значительных объемов вод из различных источников и сброс подогретых вод. Если эти воды попадают в реки и другие источники, в них наблюдается потеря кислорода, увеличивается вероятность цветения, возрастают явления теплового стресса у гидробионтов; . не исключено радиоактивное загрязнение атмосферы, вод и почв в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях. Некоторые пути решения проблем современной энергетики Несомненно, что в ближайшей перспективе тепловая энергетика будет
оставаться преобладающей в энергетическом балансе мира и отдельных стран. 1. Использование и совершенствование очистных устройств. В настоящее время на многих ТЭС улавливаются в основном твердые выбросы с помощью различного вида фильтров. Наиболее агрессивный загрязнитель - сернистый ангидрид на многих ТЭС не улавливается или улавливается в ограниченном количестве. В то же время имеются ТЭС (США, Япония), на которых производится практически полная очистка от данного загрязнителя, а также от окислов азота и других вредных полютантов. Для этого используются специальные десульфурационные (для улавливания диоксида и триоксида серы) и денитрификационные (для улавливания окислов азота) установки. Наиболее широко улавливание окислов серы и азота осуществляется посредством пропускания дымовых газов через раствор аммиака. Конечными продуктами такого процесса являются аммиачная селитра, используемая как минеральное удобрение, или раствор сульфита натрия (сырье для химической промышленности). Такими установками улавливается до 96% окислов серы и более 80% оксидов азота. Существуют и другие методы очистки от названных газов. 2. Уменьшение поступления соединений серы в атмосферу посредством
предварительного обессеривания (десульфурации) углей и других видов топлива 3. Большие и реальные возможности уменьшения или стабилизации
поступления загрязнений в среду связаны с экономией электроэнергии. 4. Не менее значимы возможности экономии энергии в быту и на
производстве за счет совершенствования изоляционных свойств зданий. Крайне расточительно использование электрической энергии для получения
тепла. Важно иметь в виду, что получение электрической энергии на ТЭС
связано с потерей примерно 60-65% тепловой энергии, а на АЭС - не менее 70%
энергии. Энергия теряется также при передаче ее по проводам на расстояние. 5. Заметно повышается также КПД топлива при его использовании вместо
Основные современные источники получения энергии (особенно ископаемое топливо) можно рассматривать в качестве средства решения энергетических проблем на ближайшую перспективу. Это связано с их исчерпанием и неизбежным загрязнением среды. В этой связи важно познакомиться с возможностями использования новых источников энергии, которые позволили бы заменить существующие. К таким источникам относится энергия солнца, ветра, вод, термоядерного синтеза и других источников. Солнце как источник тепловой энергии Это практически неисчерпаемый источник энергии. Ее можно использовать прямо (посредством улавливания техническими устройствами) или опосредствованно через продукты фотосинтеза, круговорот воды, движение воздушных масс и другие процессы, которые обусловливаются солнечными явлениями. Использование солнечного тепла - наиболее простой и дешевый путь решения отдельных энергетических проблем. Подсчитано, что в США для обогрева помещений и горячего водоснабжения расходуется около 25% производимой в стране энергии. В северных странах, в том числе и в Латвии, эта доля заметно выше. Между тем значительная доля тепла, необходимого для этих целей, может быть получена посредством улавливания энергии солнечных лучей. Эти возможности тем значительнее, чем больше прямой солнечной радиации поступает на поверхность земли. Наиболее распространено улавливание солнечной энергии посредством различного вида коллекторов. В простейшем виде это темного цвета поверхности для улавливания тепла и приспособления для его накопления и удержания. Оба блока могут представлять единое целое. Коллекторы помещаются в прозрачную камеру, которая действует по принципу парника. Имеются также устройства для уменьшения рассеивания энергии (хорошая изоляция) и ее отведения, например, потоками воздуха или воды. Еще более просты нагревательные системы пассивного типа. Циркуляция теплоносителей здесь осуществляется в результате конвекционных токов: нагретый воздух или вода поднимаются вверх, а их место занимают более охлажденные теплоносители. Примером такой системы может служить помещение с обширными окнами, обращенными к солнцу, и хорошими изоляционными свойствами материалов, способными длительно удерживать тепло. Для уменьшения перегрева днем и теплоотдачи ночью используются шторы, жалюзи, козырьки и другие защитные приспособления. В данном случае проблема наиболее рационального использования солнечной энергии решается через правильное проектирование зданий. Некоторое удорожание строительства перекрывается эффектом использования дешевой и идеально чистой энергии. Целенаправленное использование солнечной энергии пока не велико, но интенсивно увеличивается производство различного рода солнечных коллекторов. В США сейчас действуют тысячи подобных систем, хотя обеспечивают они пока только 0,5% горячего водоснабжения. Очень простые устройства используют иногда в парниках или других сооружениях. Для большего накопления тепла в солнечное время суток в таких помещениях размещают материал с большой поверхностью и хорошей теплоемкостью. Это могут быть камни, крупный песок, вода, щебенка, металл и т. п. Днем они накапливают тепло, а ночью постепенно отдают его. Такие устройства широко используются в тепличных хозяйствах. Солнце как источник электрической энергии Преобразование солнечной энергии в электрическую возможно посредством использования фотоэлементов, в которых солнечная энергия индуцируется в электрический ток безо всяких дополнительных устройств. Хотя КПД таких устройств невелик, но они выгодны медленной изнашиваемостью вследствие отсутствия каких-либо подвижных частей. Основные трудности применения фотоэлементов связаны с их дороговизной и занятием больших территорий для размещения. Проблема в какой-то мере решаема за счет замены металлических фотопреобразователей энергии эластичными синтетическими, использования крыш и стен домов для размещения батарей, выноса преобразователей в космическое пространство и т. п. В тех случаях, когда требуется получение небольшого количества энергии, использование фотоэлементов уже в настоящее время экономически целесообразно. В качестве примеров такого использования можно назвать калькуляторы, телефоны, телевизоры, кондиционеры, маяки, буи, небольшие оросительные системы и т. п. В странах с большим количеством солнечной радиации имеются проекты полной электрификации отдельных отраслей хозяйства, например сельского, за счет солнечной энергии. Получаемая таким путем энергия, особенно с учетом ее высокой экологичности, по стоимости оказывается более выгодной, чем энергия, получаемая традиционными методами. Солнечные станции подкупают также возможностью быстрого ввода в строй и
наращивания их мощности в процессе эксплуатации простым присоединением
дополнительных батарей-солнцеприемников. В Калифорнии построена
гелиостанция, мощность которой достаточна для обеспечения электроэнергией Второй путь преобразования солнечной энергии в электрическую связан с превращением воды в пар, который приводит в движение турбогенераторы. В этих случаях для энергонакопления наиболее часто используются энергобашни с большим количеством линз, концентрирующих солнечные лучи, а также специальные солнечные пруды. Сущность последних заключается в том, что они состоят из двух слоев воды: нижнего с высокой концентрацией солей и верхнего, представленного прозрачной пресной водой. Роль материала, накапливающего энергию, выполняет солевой раствор. Нагретая вода используется для обогрева или превращения в пар жидкостей, кипящих при невысоких температурах. Солнечная энергия в ряде случаев перспективна также для получения из воды водорода, который называют «топливом будущего». Разложение воды и высвобождение водорода осуществляется в процессе пропускания между электродами электрического тока, полученного на гелеустановках. Недостатки таких установок пока связаны с невысоким КПД (энергия, содержащаяся в водороде, лишь на 20% превышает ту, которая затрачена на электролиз воды) и высокой воспламеняемостью водорода, а также его диффузией через емкости для хранения. Использование солнечной энергии через фотосинтез и биомассу В биомассе концентрируется ежегодно меньше 1% потока солнечной энергии. Самый простой путь использования энергии фотосинтеза - прямое сжигание биомассы. В отдельных странах, не вступивших на путь промышленного развития, такой метод является основным. Более оправданной, однако, является переработка биомассы в другие виды топлива, например в биогаз или этиловый спирт. Первый является результатом анаэробного (без доступа кислорода), а второй аэробного (в кислородной среде) брожения. Имеются данные, что молочная ферма на 2 тысячи голов способна за счет использования отходов обеспечить биогазом не только само хозяйство, но и приносить ощутимый доход от реализации получаемой энергии. Большие энергетические ресурсы сконцентрированы также в канализационном иле, мусоре и других органических отходах. Спирт, получаемый из биоресурсов, все более широко используют в двигателях внутреннего сгорания. Так, Бразилия с 70-х годов значительную часть автотранспорта перевела на спиртовое горючее или на смесь спирта с бензином - бензоспирт. Опыт использования спирта как энергоносителя имеется в США и других странах. Для получения спирта используется разное органическое сырье. В Бразилии это в основном сахарный тростник, в США - кукуруза. В других странах - различные зерновые культуры, картофель, древесная масса. Ограничивающими факторами для использования спирта в качестве энергоносителя являются недостаток земель для получения органической массы и загрязнение среды при производстве спирта (сжигание ископаемого топлива), а также значительная дороговизна (он примерно в 2 раза дороже бензина). Для России, где большое количество древесины, особенно лиственных видов В последнее время в литературе появились термины «энергетические
культуры», «энергетический лес». Под ними понимаются фитоценозы,
выращиваемые для переработки их биомассы в газ или жидкое горючее. Под В целом же биотопливо можно рассматривать как существенный фактор
решения энергетических проблем если не в настоящее время, то в будущем. Ветер как источник энергии Ветер, как и движущаяся вода, являются наиболее древними источниками энергии. В течение нескольких столетий эти источники использовались как механические на мельницах, пилорамах, в системах подачи воды к местам потребления и т. п. Они же использовались и для получения электрической энергии, хотя доля ветра в этом отношении оставалась крайне незначительной. Интерес к использованию ветра для получения электроэнергии оживился в последние годы. К настоящему времени испытаны ветродвигатели различной мощности, вплоть до гигантских. Сделаны выводы, что в районах с интенсивным движением воздуха ветроустановки вполне могут обеспечивать энергией местные потребности. Оправдано использование ветротурбин для обслуживания отдельных объектов (жилых домов, неэнергоемких производств и т. п.). Вместе с тем стало очевидным, что гигантские ветроустановки пока не оправдывают себя вследствие дороговизны сооружений, сильных вибраций, шумов, быстрого выхода из строя. Более экономичны комплексы из небольших ветротурбин, объединяемых в одну систему. В США сооружена ветроэлектростанция на базе объединения большого числа
мелких ветротурбин мощностью около 1500 МВт (примерно 1,5 АЭС). Широко
ведутся работы по использованию энергии ветра в Канаде, Нидерландах, Дании, Возможности использования нетрадиционных гидроресурсов Гидроресурсы продолжают оставаться важным потенциальным источником энергии при условии использования более экологичных, чем современные, методов ее получения. Например, крайне недостаточно используются энергетические ресурсы средних и малых рек (длина от 10 до 200 км). В прошлом именно малые и средние реки являлись важнейшим источником получения энергии. Небольшие плотины на реках не столько нарушают, сколько оптимизируют гидрологический режим рек и прилежащих территорий. Их можно рассматривать как пример экологически обусловленного природопользования, мягкого вмешательства в природные процессы. Водохранилища, создававшиеся на малых реках, обычно не выходили за пределы русел. Такие водохранилища гасят колебания воды в реках и стабилизируют уровни грунтовых вод под прилежащими пойменными землями. Это благоприятно сказывается на продуктивности и устойчивости как водных, так и пойменных экосистем. Имеются расчеты, что на мелких и средних реках можно получать не меньше
энергии, чем ее получают на современных крупных ГЭС. В настоящее время
имеются турбины, позволяющие получать энергию, используя естественное
течение рек, без строительства, плотин. Такие турбины легко монтируются на
реках и при необходимости перемещаются в другие места. Хотя стоимость
получаемой на таких установках энергии заметно выше, чем на крупных ГЭС, Энергетические ресурсы морских, океанических и термальных вод Большими энергетическими ресурсами обладают водные массы морей и океанов. К ним относится энергия приливов и отливов, морских течений, а также градиентов температур на различных глубинах. В настоящее время эта энергия используется в крайне незначительном количестве из-за высокой стоимости получения. Это, однако, не означает, что и в дальнейшем ее доля в энергобалансе не будет повышаться. В мире пока действуют две-три приливно-отливные электростанции. Однако, кроме высокой стоимости энергии, электростанции такого типа нельзя отнести к высокоэкологичным. При их строительстве плотинами перекрываются заливы, что резко изменяет экологические факторы и условия обитания организмов. В океанических водах для получения энергии можно использовать разности
температур на различных глубинах. В теплых течениях, например в Несравнимо более реальны возможности использования геотермальных ресурсов. В данном случае источником тепла являются разогретые воды, содержащиеся в недрах земли. В отдельных районах такие воды изливаются на поверхность в виде гейзеров. Геотермальная энергия может использоваться как в виде тепловой, так и для получения электричества. Ведутся также опыты по использованию тепла, содержащегося в твердых структурах земной коры. Такое тепло из недр извлекается посредством закачки воды, которую затем используют так же, как и другие термальные воды. Уже в настоящее время отдельные города или предприятия обеспечиваются
энергией геотермальных вод. Это, в частности, относится к столице Исландии Термоядерная энергия Современная атомная энергетика базируется на расщеплении ядер атомов на
два более легких с выделением энергии пропорционально потере массы. Еще большее количество энергии выделяется в процессе ядерного синтеза, при котором два ядра сливаются в одно более тяжелое, но также с потерей массы и выделением энергии. Исходными элементами для синтеза является водород, конечным - гелий. Оба элемента не оказывают отрицательного влияния на среду и практически неисчерпаемы. Результатом ядерного синтеза является энергия солнца. Человеком этот
процесс смоделирован при взрывах водородных бомб. Задача состоит в том,
чтобы ядерный синтез сделать управляемым, а его энергию использовать
целенаправленно. Основная трудность заключается в том, что ядерный синтез
возможен при очень высоких давлениях и температурах около 100 млн. °С. Ученые пошли по пути поиска возможностей осуществления реакций в среде,
не способной к испарению. Для этого в настоящее время испытываются два
пути. Один из них основан на удержании водорода в сильном магнитном поле. Несмотря на некоторые положительные результаты по осуществлению управляемого ядерного синтеза, высказываются мнения, что в ближайшей перспективе он вряд ли будет использован для решения энергетических и экологических проблем. Это связано с нерешенностью многих вопросов и с необходимостью колоссальных затрат на дальнейшие экспериментальные, а тем более промышленные разработки. Заключение В заключение можно сделать вывод, что современный уровень знаний, а
также имеющиеся и находящиеся в стадии разработок технологии дают основание
для оптимистических прогнозов: человечеству не грозит тупиковая ситуация ни
в отношении исчерпания энергетических ресурсов, ни в плане порождаемых
энергетикой экологических проблем. Есть реальные возможности для перехода
на альтернативные источники энергии (неисчерпаемые и экологически чистые). |
|