1. • Схемы управления электродвигателями
  2. • Электрификация цеха переработки молока в ЗАО Шушенский ...
  3. • Технология ремонта компрессионных холодильников Минск-16
  4. • Расчет тягового электромагнита постоянного тока
  5. • Насос-дозатор типа НРДМ
  6. • Электрическое оборудование городского электрического ...
  7. • Методическое руководство по расчету машины постоянного тока ...
  8. • Электрическое оборудование городского электрического ...
  9. • Ремонт и наладка силового электрооборудования токарно ...
  10. • Пример выполнения магнитного анализа электромагнитного ...
  11. • Обмотки якорей машин постоянного тока
  12. • Создание первого электродвигателя
  13. • Асинхронные электродвигатели
  14. • Привод электродвигателя
  15. • Управление водродным компрессором, цех4 ЗАО Каустик
  16. • Внутризаводское планирование конверсионной программы
  17. • Внутризаводское планирование конверсионной программы
  18. • Электрооборудование мостового крана
  19. • Проектирование привода ленточного транспортёра

Реферат: Расчет электродвигателя

смотреть на рефераты похожие на "Расчет электродвигателя"

| |
|СОДЕРЖАНИЕ |
| |
| |
| |
|ЛИСТ |
| |
| |
| |
|Введение |
|3 |
|Исходные данные |
|4 |
|1. Главные размеры двигателя |
|5 |
|2. Дополнительные размеры |
|6 |
|3. Обмотка якоря |
|8 |
|4. Пазы якоря полузакрытые, овальные |
|9 |
|5. Размеры секции и сопротивление обмотки якоря |
|11 |
|6. Расчет магнитной цепи |
|12 |
|7. Обмотка вобуждения |
|15 |
|8. Обмотка добавочных полюсов |
|17 |
|9. Размещение обмоток главных и добавочных полюсов 18 |
|10. Щетки и коллектор |
|21 |
|11. Расчет коммутации |
|22 |
|12. Потери и КПД |
|23 |
|13. Рабочие характеристики двигателя |
|26 |
|14. Тепловой расчет |
|27 |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | | | | | |
| | | | | | К 558. 180111. 000 |
|Изм|Лист |№ Документа |Пдпись|Дата| |
|Разработал|Семушина | | | Электрические |Литера|Лист |Листов |
|Проверил |Амос | | | машины |у| | | 2 |28 |
| | | | | | |
|Н. Контр. | | | | | СПЭТК |
| | | | | | |

Введение:

Электромашиностроение - это основная отрасль электротехнической промышленности, изготавливающая генераторы для производства электроэнергии и электродвигатели для привода станков и механизмов.

Основным достижением в области турбогенераторостроения является разработка и освоение в производстве турбогенератора мощностью 500, 800,
1200 Вт.

В области гидрогенератора строения весьма важными достижениями является содержание мощных генераторов с высокими технологическими показаниями.

Достигнуты успехи в производстве крупных электродвигателей.
Разработаны и освоены в производстве единые серии электрические машины: серия трехфазных асинхронных двигателей 4А и серии машин постоянного тока
2П.

Проектирование электрической машины - это сложная комплексная задача, включающая расчет и выбор размеров статора, ротора и других электрических машин и конструировании статей и сборочных единиц с последующей компоновкой электрических машин в целом.

Главной задачей электромашиностроения является создание новых образцов электрических машин с высокими технологическими показателями, совершенных в эксплуатации, удовлетворяющих различным требованиям.

РАСЧЕТ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА

Исходные данные:

номинальная мощность Pном=3 кВт; номинальное напряжение сети Uном=220 В; номинальная частота вращения nном=1500 об/мин; высота оси вращения h=250 мм; степень защиты IP22; способ охлаждения IC01; способ возбуждения - параллельное с последовательной стабилизирующей обмоткой; максимальная частота вращения nmax=2200 об/мин; класс нагревостойкости изоляции F; режим работы - продолжительный.

1. Главные размеры двигателя

1.1. Предварительное значение КПД при номинальной нагрузке h’ном = 0,755

1.2. Расчетная мощность двигателя

Pi = kд / Pном = 1,07 / 3 = 2,8 кВт, где kд = 1,07.

1.3. Наружный диаметр якоря и число главных полюсов

D2 = 112 мм; 2p = 4.

1.4. Предварительное значение коэффициента полюсного перекрытия при

2p = 4 и D2 = 112 мм a’i =0,65.

1.5. Предварительное значение максимальной магнитной индукции в воздушном зазоре

B’d = 0,58 Тл.

1.6. Предварительное значение линейной нагрузки

А’2 = 210 102 А/м.

1.7. Расчетная длина сердечника якоря

6,1 1012 Pi 6,1 1012 2,8 li = _________________________________ =
__________________________________________ = 114 мм. k’в k’об a’i nном D22 B’d A’2 1 1 0,65 1500 1122 0,58 210 102

1.8. Коэффициент длины сердечника якоря l = li / D2 = 114 / 112 = 1,02, что находится в пределах рекомендуемых значений.

1.9. Внутренний диаметр сердечника якоря

D2вн = 0,31 D2 = 0,31 112 = 39,2.

2. Дополнительные размеры

2.1. В соответствии с таблицей принимаем: марка электротехнической стали сердечника якоря - 2013; форма пазов на якоре - полузакрытые овальные (см.рис. 1); тип обмотки якоря - всыпная.

Рис. 1.

2.2. В соответствии с таблицей предусматриваем в сердечнике якоря аксиальные вентиляционные каналы в один ряд, число каналов nк2 = 0, диаметр одного канала dк2 = 0.

2.3. Конструктивная длина сердечника якоря l2 = li = 114 мм.

2.4. Воздушный зазор эксцентричный. По рисунку принимаем d = 0,9 мм, тогда dmax = 0,9 / 1,5 = 0,6 мм; dmin = 0,9 2 = 1,8 мм.

2.5. Длина сердечника главного полюса lm = l2 = 114 мм.

2.6. Предварительное значение высоты главного полюса hm = 40 мм.

2.7. Полюсное деление t = p D2 / 2p = 3,14 112 / 4 = 88 мм.

2.8. Магнитная индукция в сердечнике главного полюса

Bm = 1,65 Тл.

2.9. Ширина сердечника главного полюса

B ’d a’i t s’ 0,58 0,65 88 1,2 bm = _______________ = _______________________ = 24 мм. k’c1 Bm

0,98 1,65

2.10. Ширина выступа полюсного наконечника главного полюса bmн = 0,10 bm = 1,10 24 ~ 2 мм.

2.11. Высота полюсного наконечника в основании выступа

B ’d 0,58 hm = ___________ (bp - bm)= _________________ (57 - 24)= 7 мм,

1,67 Bm 1,67 1,65 где длина полюсного наконечника bp = a’i t = 0,65 88 = 57 мм.

2.12. Сердечники главных и добавочных полюсов изготавливаем из электротехнической стали марки 3411 толщиной 1 мм (kc = 0,98).

2.13. Длина сердечника добавочного полюса lд = l2 = 114 мм.

2.14. Ширина сердечника добавочного полюса bд = 20 мм.

Число добавочных полюсов

2pд = 4.

2.15. Воздушный зазор между якорем и добавочным полюсом dд = 3 мм.

2.16. Длина станины lc1 = l2 + kl t = 114 + 0,65 88 = 171 мм, где kl = 0,65. Материал станины - сталь марки Ст3.

2.17. Толщина станины

B’d a’i t s ’ l2 0,58 0,65
88 1,2 114 hc1 = ___________________ = ___________________________ ~ 10,3 мм,

2 Bc1 lc1 2
1,28 171 где Bc1 = 1,28 Тл.

2.18. Внутренний диаметр станины

D1вн = D2 + 2dmin + 2hm + 2d = 112 + 2 0,6 + 2 40 + 2 0,9 = 195 мм.

2.19. Наружный диаметр станины

D1 = D1вн + 2hc1 = 195 + 2 10,3 = 215,6 мм.

3. Обмотка якоря

3.1. Номинальный ток якоря

Pном 103 3
103

I2ном = _______________ (1 - ki) = ______________ (1 - 0,1) = 16 А, h’ном Uном
0,755 220

Так как I2ном < 700 А, то в соответствии с таблицей принимаем простую волновую обмотку якоря 2а2 = 2.

3.2. Принимаем зубцовое деление t2 = 15 мм.

3.3. Число пазов якоря z2 = p D2 / t2 = 3,14 112 / 15 = 23 паза, что удовлетворяет требованиям таблицы.

3.4. Число эффективных проводников в обмотке якоря

N2 = A’2 p D2 2а2 / I’2ном 103 = 210 102 3,14 112 2 / 16 103 = 923.
Принимаем

N2 =920, тогда

N2 / z2 = 920 / 23 = 40.

3.5. Диаметр коллектора

Dк = 0,80 D2 = 0,80 112 = 90 мм, что соответствует стандартному значению Dк .
Максимальная окружная скорость на коллекторе vmax = p Dк nmax / 60 103 = 3,14 78 1500 / 60 103 = 7 м/с, что не превышает допускаемого значения 40 м/с.

3.6. Составляем таблицу вариантов.

Так как напряжение Uк не должно превышать 16 В, принимаем
| № | Uп | K=Uп z2 | Dк, мм | tк , мм | | Uк ,В|
|Варианта | | | | |N2 | |
| | | | | |Wc2= _____| |
| | | | | | | |
| | | | | |2K | |
| | 5 | 115 | 90 | 3,0 | 4 | 7,6|

3.7. Шаги обмотки якоря: первый частичный шаг по якорю y1 = (zэ / 2p) + e = (115 / 4 ) + 0,25 = 29; шаг обмотки по коллектору yк = (K + 1) / p = (115 + 1) / 2 = 57; шаг обмотки по реальным пазам yz = (z2 / 2p) + e = (23 / 4) + 0,25 = 6.

3.8. Уточненное значение линейной нагрузки

N2 I2ном
920 16

A2 = ________________ = ____________________ = 209 10 2 А/м

2а2 p D2 10-3 2 3,14 112 10-3 где

N2 = 2Uп z2 wc2 = 2 5 23 4 = 920.

4. Пазы якоря полузакрытые овальные

4.1. Частота перемагничивания якоря f2 = p nном / 60 = 2 1500 / 60 = 50 Гц.

4.2. Ширина зубца якоря в его основании bz2min = B ’d t2 / kc2 B ’z2max = 15 0,58 / 0,95 2,3 = 3,98 мм, где

Bz2max = 2,3 Тл.

4.3. Высота зубца якоря hz2 = 21 мм.

4.4. Высота спинки якоря

D2 - D2вн
(112 - 39) hc2 = _____________ - hz2 = _______________ - 21= 15,5 мм.

2

2

4.5. Магнитная индукция в спинке якоря

B’d a’i t

0,58 0,65 88

Bс2 = _________________________ = _________________________________

= 0,78 Тл.

2kc2 (hc2 - __ dк2) 2 0,95
(15,5 - __ 0)

4.6. Ширина паза p (A2 - 2 hz2) 3,14 (112 -
2 19) bп2 = __________________ - bz2min = ____________________ - 3,86 =

6,24 мм. z2

23

4.7. Диаметр меньшей окружности паза p (D2 - 2hz2) - z2 bz2 3,14
(112 - 2 0,8) - 23 3,98 dп2 = _____________________________ =

____________________________________________ = 5,46 мм. z2 - p

23 - 3,14

4.8. Диаметр большой окружности паза p (D2 - 2hш2) - z2 bz2 3,14 (112 - 2 0,8)
- 23 3,98 d’п2 = _________________________ =

_________________________________________ = 9,76 мм, z2 + p
23 + 3,14

Расстояние между центрами окружностей hп2 = hz2 - hш2 - 0,5 (d’п2 + dп2) = 21 - 0,8 - 0,5 (9,76 + 5,46) =

12,6 мм.

4.9. Площадь паза в свету

Sп2 = (p / 8)[(d’п2 - bпр)2 + (dп2 - bпр)2] + 0,5 (d’п2 + dп2 -

2bпр) hп2 =

(3,14 / 8) [(9,76 - 0,1)2 + (5,46 -0,1)2]+ 0,5(9,76 + 5,46 - 2 0,1)

12,6 = 142 мм2, где bпр = 0,1 припуск на сборку сердечника якоря по ширине паза.

4.10. Площадь паза, занимаемая обмоткой

Sоб = Sп2 - Sи - (Sкл + Sпр) = 142 - 17,2 - 8,19 = 116,6 мм2, где Sи - площадь, занимаемая корпусной изоляцией, мм2

Sи ~ 0,5 bи (p d’п2 + p dп2 + 4hп2) = 0,5 0,35 (3,14 9,76 + 3,14

5,46 + 4 12,6) = =17,2 мм2,

Sкл + Sпр ~ 1,5 dп2 = 1,5 5,46 = 8,19 мм2.

4.11. Предварительное значение диаметра изолированного обмоточного провода круглого сечения d’из = Kз2 Sоб z2 / N2 = 0,70 142 23 / 920 = 1,58 мм.
Уточненное значение коэффициента заполнения паза якоря при стандартном диаметре изолированного провода

Kз2 = N2 d2из / Sоб z2 = 920 (158)2 / 142 23 = 0,70

4.12. Допустима плотность тока доп = (A2 доп) 10-6 / A2 = 1,1 1011 10-6 / 209 102 = 5,3 A/мм2, при

D2 = 112 мм, принимаем

A2 доп = 1,1 1011 А2/ мм3.

4.13. Плотность тока в обмотке якоря

2 = I2ном / 2a2 nэл q2эл = 16 / 2 1 1,767 = 4,53 А/мм2, что не превышает допустимое значение плотности тока.

Конструкция изоляция пазовых и лобовых частей обмотки якоря при напряжении, не превышающем 600 В.

5. Размеры секции и сопротивление обмотки якоря

5.1. Среднее значение зубцового деления якоря tср2 = p (D2 - hz2) / z2 = 3,14 (112 - 21) / 23 = 12,4 мм.

5.2. Средняя ширина секции обмотки якоря bс,ср = tср2 yz = 12,4 6 = 74 мм.

5.3. Средняя длина одной лобовой части обмотки bс,ср

74 bл2 = __________________________ - hz2 + 40 =
____________________________ - 21 + 40 = 285мм

1 - [( bп2 + 3,5) / t2]2 1 - [( 6,24
+ 3,5) / 15]2

5.4. Средняя длина витка обмотки lср2 = 2 (l2 + lл2) = 2 (114 + 285) = 798 мм.

5.5. Вылет лобовой части обмотки якоря bс,ср (bп2 + 3,5) hz2

74 (6,24 + 3,5) lв2 = _______ ___________________________ + _____ + 20 = ________
____________________________ +

2 1 + [( bп2 + 3,5) / t2]2 2

2 1 - [( 6,24 + 3,5) / 15]2

21

+ _______ + 20 = 51 мм.

2

5.6. Активное сопротивление обмотки якоря rcu N2 lср2 103 24,4 10-9 920 798 103 r2 = ____________________ = ___________________________ = 1,26 Ом.

2(2a2)2 nэл q2эл 2 (2)2 1 1,767

6. Расчет магнитной цепи

6.1. Предварительное значение ЭДС двигателя при номинальной нагрузке

Е’2ном = 0,5 Uном (1 + h’ном ) = 0,5 220 (1 + 0,755) = 193 В.

6.2. Полезный магнитный поток

60а2 Е2ном 60 1 193

Ф = _________________ = ______________________ = 0,0042 Вб. p N2 nном 2 920 1500

6.3. Уточненное значение магнитной индукции в воздушном зазоре

Ф 106 0,0042 106

Bd = ____________ = ________________ = 0,64 Тл. a’i t li 0,65 88
114

6.4. Коэффициента воздушного зазора kd = kd2 kб = 1,32 1,24 = 1,64 bп2

6,24 kd2 = 1 + ___________________________ = 1 +

_________________________________ = 1,32 t2 - bп2 + 5d t2 / bп2 15 -
6,24 + 5 0,9 15 / 6,24 nб lб hб

0,25 147 3 kd2 = 1 + ___________________________ = 1 +

_________________________________ = 1,33 l2 (d + hб) - nб lб hб 114
(0,9 + 3) - 0,25 147 3 где nь lь = 0,25 l2 ; hб = 3 мм.

6.5. Магнитное напряжение воздушного зазора

Fd = 0,8 Bd d kd 103 = 0,8 0,5 0.9 1,3 103 = 478,8 A.

6.6. Магнитная индукция в наименованием сечением зубца

Bzmax = Bd t2 / kc2 bz2min = 0,34 15 / 0,95 3,98 = 2,54 Тл, где bz2min = 3,98.

6.7. Ширина зубца в его наибольшем расчетном сечении bz2max = t2 - bп2 = 15 - 6,24 = 8,76 мм.

6.8. Ширина зубца в его среднем расчетном сечении bz2ср = 0,5 (bz2min - bz2max ) = 0,5 (3,98 + 8,76) = 6,31 мм.

6.9. Магнитная индукция в расчетных сечениях зубца: в наименьшем

Bz2max = 1,98 Тл; в наибольшем

Bz2min = Bd t2 / kc2 bz2max = 0,64 15 / 0,95 8,76 = 1,15 Тл, в среднем

Bz2ср = Bd t2 / kc2 bz2ср = 0,64 15 / 0,95 6б31 = 1,60 Тл,

6.10. Коэффициент для определения напряженности магнитного поля в наименьшем сечении зубца kп2max = t2 / kc2 bz2min = 15 / 0,95 3,98 = 3,96.

6.11. Напряженность поля при

Bz2max = 1,94 Тл для стали марки 2013

Hz2max = 1 104 А/м .

6.12. Напряженность поля при

Bz2min = 0,9 Тл

Bz2ср = 1,25 Тл

Hz2min = 190 А/м

Hz2ср = 430 А/м

6.13. Расчетное значение напряженности поля в зубце

Hz2 = (Hz2max +4Hz2ср + Hz2min) / 6= (1 104 + 4 430 + 190) / 6 = 320

103 А/м

6.14. Магнитное напряжение зубцового слоя якоря

Fz2 = Hz2 hz2 10-3 = 320 103 21 10-3 = 6720 А.

6.15. Магнитная индукция в спинке якоря

Bd ai t
0,64 0,65 88

Bс2 = _________________________ = _________________________________

= 1,24 Тл.

2kc2 (hc2 - __ dк2) 2 0,95
(15,5 - __ 0)

6.16. Расчетная длина магнитной силовой линии в спинке якоря
Lc2 = (p / 2p) (D2вн + hc2) + hc2 = (3,14 / 4)(39 + 15,5) + 15,5 = 58 мм.

6.17. Напряженность поля в спинке якоря

Hс2 = 225 A/м.

6.18. Магнитное напряжение спинки якоря

Fc2 = Hс2 Lc2 10-3 = 225 490 10-3 = 110 A.

6.19. Магнитная индукция в сердечнике главного полюса sг Ф 106 1,2 0,0042
106

Bт = ______________ = ___________________ = 1,88 Тл. lт kc1 bт 114 0,98
24

6.20. Напряженность поля в сердечнике главного полюса

Hт = 760 A/м

6.21. Магнитное напряжение сердечника главного полюса

Fт = Hт Lт 10-3 = 760 40 10-3 = 30 A, где

Lт = hт = 40 мм.

6.22. Зазор между главным полюсом и станиной dтс1 = 2 lт 10-4 + 0,1 = 2 114 10-4 + 0,1 = 1, 122 мм.

6.23. Магнитное напряжение зазора между главным полюсом и станиной

Fdтс= 0,8 Bт dтс1 103 = 0,8 1,45 0.122 103 = 141 A.

6.24. Магнитная индукция в спинке станины sг Ф 106 1,2 0,0042
106

Bт = ______________ = ___________________ = 1,43 Тл.

2 lс1 hc1 2 171,2
10,3 lс1 ~ l2 + kl t = 114 + 0,65 88 = 171,2

Полученное значение магнитной индукции мало отличается от принятого

6.25. Напряженность поля в спинке станины по таблице для массивных станин

Hс1 = 1127 A/м.

6.26. Расчетная длина магнитной силовой линии в спинке станины
Lc1 = (p / 2p) (D1вн + hc1) + hc1 = (3,14 / 4)(195 + 10,3) + 10,3 = 171 мм.

6.27. Магнитное напряжение станины

Fc1 = Hс1 Lc1 10-3 = 1127 171 10-3 = 193 A.

6.28. Магнитодвижущая сила обмотки возбуждения на пару полюсов в режиме холостого хода

Fво = 2 Fd + 2 Fz2 + Fc2 + 2 Fт + 2 Fdтс + Fc1 =

= 2 478,8 + 2 6720 + 2 110 + 2 30 + 193 = 15385 A.

7. Обмотка возбуждения

7.1. Поперечная МДС обмотки якоря на пару полюсов

F2 = 0,5 N2 I2ном / 2a2 p = 0,5 920 16 / 2 2 = 1840 A.

7.2. Коэффициент учитывающий размагничивающее действие МДС поперечной реакции якоря при

Bz2max = 1,98 Тл,

F2 / Fво = 1840 / 15385 = 0,12 kp,2 = 0,175

7.3. Размагничивающее действие МДС поперечной реакции якоря на пару полюсов

Fqd = kp,2 F2 = 0,175 1840 = 322 A.

7.4. Требуемое значение МДС обмотки возбуждения при нагрузке на пару полюсов

Fв,н = Fво + Fqd - Fc = 15385 + 322 - 276 = 15431 A, где МДС стабилизирующей обмотки на пару полюсов

Fc = 0,15 F2 = 0,15 1840 = 276 A.

7.5. Средняя длина витка многослойной полюсной катушки параллельного возбуждения lср,к = 2 (lт + bт) + p (bк,ш + 2bиз + 2bз + 2bк) =

2 (114 + 24) + 3,14 (15 + 2 0,2 + 2 0,6 + 2 2) = 340 мм, где ширина катушки bк,ш = 15 мм, толщина изоляции катушки bиз = 0,2 мм, односторонний зазор между катушкой и сердечником полюса bз = 0,6 мм, толщина каркаса bк = 2 мм.

7.6. Площадь поперечного сечения обмоточного провода (при последовательном соединении всех полюсных катушек) q’в = Fв,н kзап rcu p lср,к 103 / Uв = 15431 1,05 24,4 10-9 340 103

= 0,157 мм2,

По таблице принимаем катушку возбуждения из изолированного провода круглого сечения, многослойную по ширине и высоте; принимаем провод марки
ПЭТ - 155 qв = 1,539 мм2, d = 1,4 мм2, dиз = 1,485 мм2.

7.7. Число витков в полюсной катушке wк,в = Fв,н / 2 D’в qв = 15431 / 2 5 0,157 = 127, где плотность тока по

D’в = 5 A/мм2.

7.8. Сопротивление обмотки возбуждения rв = rcu 2 wк, в lср,к 103 / qв = 24,4 10-9 4 127 340 103 / 0,157=

27 Ом.

7.9. Наибольшее значение тока возбуждения

Iв = Uв / rв = 220 / 27 = 8,1 А.

7.10. Уточненное значение плотности тока в обмотке возбуждения

D В = I в / qв = 8,1 / 1,539 = 5,2 А/мм2.

7.11. Число витков в полюсной катушке стабилизирующей обмотки wк,c = Fс ac / I2ном = 276 1 / 16 = 17,25 , принимаем wк,c = 17, число параллельных ветвей ac = 1 .

7.12. Площадь поперечного сечения обмоточного провода стабилизирующей обмотки q’c = I2ном / ac D c = 16 / 1 4,9 = 3,265 мм2 .

7.13. По таблице принимаем для изготовления полюсных катушек стабилизирующей обмотки неизолированный медный провод круглого сечения. qc =3,53 мм2, d = 2,12 мм2, dиз = 2,22 мм2.

7.14. Уточненное значение плотности тока в стабилизирующей обмотке

D c = I2ном / ac qc = 16 /1 3,53 = 4,532 А/мм2.

7.15. Радиус закругления медного провода катушки стабилизирующей обмотки r = 0,5 (bc + 2bз) = 0,5 (4,25 + 2 0,6) = 2,725 мм, минимально допустимый радиус закругления rmin = 0,05 b2 / a = 0,05 4,252 / 0,80 = 1,13 мм.

7.16. Средняя длина витка катушки стабилизирующей обмотки lср,к = 2 (lт + bт) + p (bк,с + 2 r) = 2 (114 +24) + 3,14 (13 + 2

2,725) = 334 мм, где bк,с = b = 13 мм.

7.17. Сопротивление стабилизирующей обмотки

2prcu lср,к wк,c 103 4 24,4 10-9 340
17 103 rс = ________________________ = ____________________________ = 0,157

Ом. ac2 qc
12 3,53

8. Обмотка добавочных полюсов

8.1. Число витков катушки добавочного полюса wк,д = kд F2 aд / 2I2ном =1,25 1840 1 / 2 16 = 71,875 витков, принимаем wк,д = 72 витка, где aд = 1, kд = 1,25

8.2. Площадь поперечного сечения проводника катушки добавочного полюса q’д = I2ном / aд д = 16 / 1 4,9 = 3,26 мм2 .

D д = 4,9.

8.3. Принимаем для изготовления катушек добавочных полюсов голый медный провод круглого сечения по таблице qд = 3,53 мм2.

8.4. Уточненное значение плотности тока в обмотке добавочных полюсов

D д = I2ном / aд qд = 16 / 1 3,53 = 4,53 A/мм2 .

8.5. Средняя длина витка катушки добавочного полюса lср,к = 2lд + p (bд + bк,д + 2bз + 2bиз) = 2 114 + 3,14 (2 + 13 + 2

0,6 + 2 0,2) = =280 мм, где bк,д = b = 13, bз = 0,6, bиз = 0,2.

8.6. Сопротивление обмотки добавочных полюсов rcu lср,к wк,д 2p 103 24,4 10-9 340 72
4 103 rд = ________________________ = ____________________________ = 0,66

Ом. aд2 qд
12 3,53

9. Размещение обмоток главных и добавочных полюсов

9.1. Ширина многослойной катушки главного полюса bк,в = kp Nш dиз + bиз,пр = 1,05 10,1 1,485 + 2,4 = 18,1 мм, где

Nш = bк,ш / dиз = 15 / 1,485 = 10,1 kp = 1,05, bиз, пр = 2 + 0,2 2 =2,4 мм.

9.2. Высота многослойной катушки главного полюса с учетом разделения полюсной катушки на две части вентиляционным каналом шириной bв,к = 0, hк,в = kp Nв dиз + hиз,пр + bв,к = 1,05 12,5 1,485 + 1,485 0 = 21 мм, где Nв - число изолированных проводов по высоте катушки:

Nв = wк,в / Nш = 127 / 10,1 = 12,5; высота прокладок и каркаса hиз,пр = 1,485 мм.

9.3. Высота полюсной катушки стабилизирующей обмотки hк,с = h + hиз,пр = 1,485 мм, где hиз,пр = 1,485 мм.

9.4. Общая высота катушек и вентиляционного канала главного полюса hr,п = hк,в + hк,с = 21 + 1,485 = 22,485 мм.

9.5. Площадь занимаемая непосредственно в межполюсном окне двумя частями (секциями) катушки возбуждения, включая все прокладки и вентиляционный зазор

Qк,в = bк,в hк,в = 18,1 21 = 380 мм2.

Рис. 2.

Эскиз междуполюсного окна двигателя постоянного тока
(3 кВт, 220 В, 1500 об/мин).

9.6. Высота катушки добавочного полюса из неизолированной меди hк,д = kp [wк,д h + 0,3(wк,д - 3)] + 2 =

= 1,05 [71,85 0 +0,3(71,85 - 3)] + 2 ~ 24 мм.

9.7. На рисунке показан эскиз межполюсного окна. При этом площадь занимаемая полюсной катушкой возбуждения из двух секций, включая вентиляционный зазор 0 мм, составляет Qк,в = 380 мм2, а компоновка этих секций такова, что минимальный воздушный промежуток между выступающими краями главных и добавочных полюсов, а так же между краями полюсных катушек и внутренней поверхностью станины составляет 0 мм.

10. Щетки и коллектор

10.1. Расчетная ширина щетки

Dк а2

90 1 bщ’ = kз,к bн,з _____ - tк (Nш + eк - _____ ) = 0,75 31 _____ - 3 (4 +

0,25 - ___ ) = 7,68 мм;

D2 p
112 2 здесь kз, к = 0,75; tк = 3 мм; bн, з = t - bр = 88 - 57 = 31 мм; eк = (K / 2p) - y1 = (115 / 4) - 29 = 0,25.
По таблице принимаем стандартную ширину щетки bщ = 8 мм.

10.2. Число перекрываемых щеткой коллекторных делений g = bщ / tк = 8 / 3 = 2, что находится в пределах рекомендуемых значений для простой волновой обмотки якоря.

10.3. Контактная площадь всех щеток

S Sщ = 2 Iном / D’щ = 2 16 / 0,11 = 290 мм2 , где принимаем по таблице для электрографитированных щеток марки ЭГ14

Dщ = 0,11 А/мм2.

10.4. Контактная площадь щеток одного бракета

Sщ,,б = S Sщ / 2p = 290 / 4 = 73 мм2 .

10.5. Требуемая длина щетки l’щ = Sщ ,б / bщ = 73 / 8 = 9,125 мм, принимаем на одном бракете по одной щетке

(Nщ,б = 1).
Длина одной щетки lщ = 10 мм.

10.6. Плотность тока под щеткой

Dщ = 2 Iном / Nщ,б bщ lщ 2p = 2 16 / 1 8 10 4 = 0,1 А/мм2 , что не превышает рекомендуемого значения

D’щ = 0,11 А/ мм2.

10.7. Активная длина коллектора при шахматном расположении щеток lк = Nщ,б (lщ + 8) + 10 = 1 (10 + 8) + 10 = 28 мм.

10.8. Ширина коллекторной пластины bк = tк - bиз = 3 - 0,2 = 2,8 мм, толщина изоляционной прокладки bиз = 0,2 мм.

11. Расчет коммутации

11.1. Окружная скорость якоря

U2 = p D2 n 10-3 / 60 = 3,14 112 150 10-3 / 60 = 8,792 м/с.

11.2. Приведенный коэффициент проводимости пазового рассеяния якоря при круглых пазах hz2 hш2 lл2
2,5 108 a2 l = 0,6 _____ + _____ + _____ + ___________________ _____ = dп2 bш2 l2 wc2 l2 A2 2 p

21 0,8 291 2,5 108

1

= 0,6 _____ + _____ + _____ + ________________________ _____ =

10,142 .

6,24 6,24 114 4 114 209 102 8,79

2

11.3. Реактивная ЭДС

Ep = 2 wc2 li v2 l 10-5 = 2 4 114 209 102 8,792 6,49 10-5 = 10876 B.

12. Потери и КПД

12.1. Масса зубцового слоя якоря

dп2 + d’п2

Gz2 = 7,8 10-6 z2 bz2 (hп2 + _______________ ) li kc =

4

5,46 +
9,76

= 7,8 10-6 24 6,36 ( 12,6 _______________ ) 114
0,95 = 2,01 кг.

4

12.2. Масса стали спинки якоря

Gс2 = 7,8 10-6 {(p / 4)[(D2 - 2 hz2)2 - D22вн - d2к2 nк2]} li kc =

= 7,8 10-6 {(3,14 / 4)[(112 - 2 21)2 - 39,22 - 0 0]}114 0,95 = 2,23 кг.

12.3. Магнитные потери в сердечнике якоря

Pм2 = 2,3 P1,0/50 (f2 / 50)b (B2z2ср Gz2 + B2c2 Gс2) =

= 4,02 (1,252 2,60 + 0,972 2,88) = 27 Вт, где f2 = p n / 60 = 2 1500 / 60 = 50 Гц;

P1,0/50 = 1,75 Вт/кг; b = 1,4; принимаем

2,3 P1,0/50 (f2 / 50)1,4 = 4,02 Вт/кг;

12.4. Электрические потери в обмотке возбуждения

Pэ,в = U2в / rв = 2202 / 25,6 = 1891 Вт.

12.5. Электродвижущая сила якоря при номинальной нагрузке двигателя

P N2 2 920

E2ном = ___________ Фnном = ___________ 0,0048 1500= 193,2 В.

60а2 60 1

12.6. Уточненное значение тока якоря при номинальной нагрузке

I2ном = (Uном + E2ном - D Uщ ) / Sr = (220 193,2 - 2,5) / 2,207 =

10,7 A,

Sr = r2 + rc +rд = 1,39 + 0,15 + 0,66 = 2,207 Ом,

DUщ = 2,5 В.

12.7. Электрические потери в обмотке якоря

Pэ2 = I22ном r2 = 10,72 1,39 = 162 Вт.

12.8. Электрические потери в обмотках статора, включенных последовательно с обмоткой якоря

Pэ,п1 = I22ном (rд + rc) = 10,72 (0,66 + 0,157) = 93,5 Вт.

12.9. Электрические потери в переходном щеточном контакте

Pэ,щ = DUщ I22ном = 2,5 10,7 = 26,75 Bт.

12.10. Потери на трение щеток о коллектор где окружная скорость на коллекторе

Pт,щ = 0,5 S Sщ v2 = 0,5 290 7,06 = 10,24 Bт, где окружная скорость на коллекторе vк = p Dк nном / 60 10-3 = 3,14 90 1500 / 60 10-3 = 7,06 м/с.

12.11. Потери на трение в подшипниках и на вентиляцию

Pт.п,в = 20 Вт

Рис.3.

Рабочие характеристики двигателя постоянного тока

( 3 кВт, 220 В, 1500 об/мин).

12.12. Суммарные механические потери

Pмех = Pт,щ + Pт.п,в = 10,24 + 20 = 30,24 Вт.

12.13. Добавочные потери

Pдоб = 0,001 Pном / hном 10-3 = 0,001 3 / 0,755 10-3 = 0,012 Вт.

12.14. Суммарные потери в двигателе

S P = (Pм2 + Pэ2 + Pэ,в + Pэ,п1 + Pэ,щ + Pмех + Pдоб) 10-3 =

= (27 = 162 + 1891 + 93,5 + 26,75 + 30,24 + 0,012) 10-3 = 2,23 кВт.

12.15. Коэффициент полезного действия двигателя при номинальной нагрузке hд,ном = 1 - S P/ P1 = 1 -2,23 / 4,3 = 0,48, где
P1 = Uном (I2ном + Iв) 10-3 = 230 (10,7 + 8,6) 10-3 = 4,3 Вт.

13. Рабочие характеристики двигателя

Расчет рабочих характеристик двигателя приведен в таблице. По данным этой таблицы построены рабочие характеристики рисунок 3.

|b = I2 / |0,2 |0,50 |0,75 |1,0 |1,25 |
|I2ном | | | | | |
|I2 ,A |3,2 |8 |12 |16 |20 |


Pm2+Pэ,в+Pмех, Вт
| |121,82 |109,62 |164,43 |219,24 |121,82 |


Pэ2, Вт
| |32,4 |81 |20,16 |162 |202,5 |
|Pэ,п 2, Вт |18,7 |46,8 |70,1 |93,5 |116,9 |
|Pэ,щ, Вт |5,35 |13,37 |20,06 |26,75 |33,43 |
|Pдоб, Вт |0,0025 |0,006 |0,009 |0,012 |0,015 |
|S P, кВт |0,45 |1,12 |1,67 |2,23 |2,79 |


I=I2 +Iв,А
| |4,8 |12,1 |18,1 |24,1 |30,1 |


P1=Uном I10-3,
Вт
| |10,60 |26,51 |39,76 |53,02 |66,28 |

h
| |0,151 |0,378 |0,566 |0,755 |0,944 |


P2= P1 h
| |8,01 |20,01 |30,02 |40,03 |50,04 |


E2, B
| |38,6 |96,6 |144,9 |193,2 |241,5 |

n , об/мин
| |300 |750 |1125 |1500 |1875 |


М2, Н м
| |0,91 |2,26 |4,65 |6,2 |15,02 |

14. Тепловой расчет

14.1. Превышение температуры поверхности сердечника якоря над температурой воздуха внутри машины

Pэ2 (2l2 / lcp2) + Pм2 162 (2 114 /
798) + 27
DQпов2 = ____________________________ = __________________________________
= 13,60C

(p D2 +nк2 dк2) l2 a2 (3,14 112 + 0
0) 114 7 10-5 где a2 = 7 10-5 Вт/(мм2 0С).

14.2. Периметр поперечного сечения условной поверхности охлаждения паза якоря
П2 = 0,5 p (dп2 + d’п2) + 2hп2 = 0,5 3,14 (5,46 + 9,76) + 2 12,6 = 49 мм.

14.3. Перепад температуры в изоляции пазовой части обмотки якоря

Pэ2 (2l2 / lcp2) Cb2 162 (2 114 / 798)

1,7
DQиз2 = _________________ ________ = _______________________ _________ =
0,40C . z2 П2 l2 lэкв 23 49 114

16 10-5

14.4. Превышение температуры наружной поверхности лобовых частей обмотки якоря над температурой воздуха внутри машины

Pэ2 (2l2 / lcp2) 162 (2 114 /
798)
DQиз2 = _________________ = ________________________ = 1,840C .

2 p D2 lв2 a2 2 3,14 112 51 7 10-
5

14.5. Перепад температуры в изоляции лобовых частей обмотки

Pэ2 (2l2 / lcp2) Cb2 162 (2 114 / 798)

1,7
DQиз,л2 = _________________ ________ = ________________________ ________
= 0,110C .

2z2 Пл2 lл2 lэкв 2 23 49 114

16 10-5 где
Пл2 ~ П2 = 49 мм.

14.6. Среднее превышение температуры обмотки якоря над температурой воздуха внутри машины

2l2
2lл2
DQиз2 = ________ (DQпов2 + DQиз2) + ________ (DQп2 + DQиз,л2) = lcp2 lcp2

2 114 2 114
= ________ (472,9 + 8,6) + ________ (531 + 1300) = 4,460C.

798 798

14.7. Сумма потерь
SP’ = SP - 0,1 (Pэ,в + Pэ,п1) = 2,23 - 0,1 (1891 + 93,5) = 196,22 Вт.

14.8. Условная поверхность охлаждения машины
Sм = p D1 (l2 + 2lв2 ) = 3,14 215,6 (114 + 2 51) = 147,2 103 мм2.

14.9. Среднее превышение температуры воздуха внутри машины над температурой охлаждающей среды
DQв = SP’/ Sм aв = 196,22 / 177,2 103 55 10-5 = 0,24 0C, где aв = 55 10-5 Вт/(мм2 0С).

14.10. Среднее превышение температуры якоря над температурой охлаждающей среды
DQ2 = DQ’2 + DQв = 4,46 + 0,024 = 4,484 0C.

14.11. Условная поверхность охлаждения полюсной катушки возбуждения
Sк,в = lср,к Пк,в = 400 57 = 21600 мм2, где
Пк,в = 54 мм.

14.12. Превышение температуры наружной поверхности охлаждения многослойной катушки главного полюса над температурой воздуха внутри машины
DQк,в = 0,9Pэ,в / 2p Sк,в a1 = 0,9 1891 / 4 21600 4,2 10-5 = 46,9 0C, где a1 = 4,2 10-5 Вт/(мм2 0С).

14.13. Перепад температуры в изоляции полюсной катушки главного полюса

Pэ,в bиз 1891

0,2
DQиз,к.в = 0,9 ________ _______ = ___________ _______ = 24,6 0С.

2p Sк,в lэкв 4 21600
16 10-5

14.14. Среднее превышение температуры катушки главного полюса над температурой внутри машины
DQк,в = DQк,в + DQщ,к,в = 46,9 + 24,6 = 71,5 0C.

14.15. Среднее превышение температуры обмотки возбуждения над температурой охлаждающей среды
DQов = DQ’ к,в + DQв = 71,5 + 0,024 = 71,524 0C.

14.16. Условная поверхность охлаждения однослойной катушки добавочного полюса
Sд = lср,к (wк,д а + 0,6 b) = 346 (72 2,12 + 0,6 2,22) = 53 103 мм2 , где lср,к = 346 мм.

14.17. Электрические потери в добавочном полюсе
Pэ,д = I22ном rд / ад = 10,72 0,68 / 1 = 78 Вт.

14.18. Превышение температуры наружной поверхности добавочного полюса над температурой воздуха внутри машины
DQк,д = 0,9Pэ,д / 2p Sд a1 = 0,9 78 / 4 53 103 4,2 10-5 = 87 0C.

14.19. Среднее превышение температуры обмотки добавочного полюса над температурой охлаждающей среды
DQд = DQ к,д + DQв = 87 + 0,024 = 87,024 0C.

14.20. Превышение температуры наружной поверхности коллектора над температурой воздуха внутри машины

Pэ,щ’ + Pт,щ 26,75 + 10,24
DQ’коп = __________________ = __________________ = 0,05 0С,

Sкоп aкоп
44 103 17 10-5 где
Sкоп = p Dк lк = 3,14 90 154 = 44 103 мм2; aкоп = 17 10-5 Вт/(мм2 0С).

14.21. Превышение температуры коллектора над температурой охлаждающей среды при входе воздуха со стороны коллектора
DQкоп = DQ’коп =0,005 0С.

Таким образом, тепловой расчет показал, что превышение температуры различных частей двигателя не превышает допустимых значений для изоляции класса нагревостойкости .


©2007—2016 Пуск!by | По вопросам сотрудничества обращайтесь в contextus@mail.ru