Реферат: Свойства и роль в биохимических процессах аминокислот, входящих в состав белковых молекул

Аминокислоты – это класс органических соединений, содержащих одновременно карбоксильные и аминогруппы. Обычно аминокислоты растворимы в воде и нерастворимы в органических растворителя. В нейтральных водных растворах аминокислоты существуют в виде биполярных ионов (цвиттерионов) и ведут себя как амфотерные соединения, т.е. проявляются свойства и кислот, и оснований.
В природе существует свыше 150 аминокислот, но только около 20 важнейших аминокислот служат мономерами для построения белковых молекул. Порядок включения аминокислот в белки определеятся генетическим кодом.
Именно об этих 20 аминокислотах и будет идти речь дальше. Их общие свойства известны хорошо и описаны практически в каждом учебнике по биохимии. Однако частные свойства, характерные только для той или иной аминокислоты затрагиваются мало, и именно они будут рассмотрены. Для удобства все данные представлены в виде таблицы.
Таблица 1.
Название аминокислоты
Роль в структуре и свойствах белков
Роль в метаболизме (заменимая незаменимая)

Аланин (?- аминопропионовая кислота)
Участвует в стабилизации 3-й и 4-й структуры за счёт гидрофобных взаимодействий; участвует в формировании ?-спирали
Заменимая аминокислота.
Играет большую роль в обмене азотистых соединений. Исходное соединение в синтезе каучуков, каратиноидов, углеводов, липидов и др.
Аргинин (?-амино-?-гуанидинвалери-
ановая кислота)
Обладает ярко выраженными основными свойствами, что обеспечивает основный характер белков. В белках её содержится довольно много, особенно в гистонах и протаминах клеточный ядер.
Способна к образованию ионных и водородный связей, стабилизирую вторичную и третичную структуры белка.
Данная аминокислота может синтезироваться в организме человека, однако скорость её синтеза, особенно при активном росте может быть недостаточна, что приводит к необходимости введения её из вне. Т.е. аргинин находится на границе между заменимыми и незаменимыми аминокислотами.
Участвует в синтезе мочевины ( орнитиновый цикл ) и других процессах азотистого обмена.
Аспарагин
Амид дикарбоновой кислоты, обладает основными свойствами, что делает белок некислым. Способен к образованию ионных и водородных связей.
Заменимая аминокислота.
Путём образования аспаргина из аспаргиновой кислоты в организме связывается токсический аммиак. Принимает участие в реакция переаминирования.
Аспарагиновая (аминоянтарная) кислота
Из всех природных аминокислот у неё наиболее выражены кислотные свойства, явл. важной составной частью белков. Обеспечивает гидрофильные свойства белков. Способна образовывать ионные и водородные связи.
Заменимая аминокислота.
Участвует в реакциях переаминирования. Играет важную роль в обмене азотсодержащих веществ. Участвует в образование мочевины , пиримидиновых оснований.
Валин (?-аминовалериановая кислота, ?-амино-?-метилмасляная кислота)
Входит в состав практически всех белков. Особенно много в альбумина, казеине, белках соединительной ткани. Придает белкам гидрофобные свойства, т.к. содержит углеводородный радикал.
Незаменимая аминокислота.
Служит одним из исходных веществ при биосинтезе пантотеновой кислоты (витамин В3 ) и пеницилина.
Гистидин (?-амино-?-имидазолилпропио-новая кислота)
Преобладают основные свойства, содержится почти во всех белках.
Для многих животных-незаменимая аминокислота. Исходное вещество при биосинтезе гистамина и биологически активных пептидов мышц – карнозина и анзерина.
Глицин (аминоуксусная кислота)
Участвует в организации 3-й и 4-й структуры; препятствует ?-спирали; формирует изгиб ?-цепи
Заменимая нейроактивная аминокислота; участвует в синтезе глутатиона, порфирина, креатина гликолевой и гиппуровой кислот, пуриновых оснований.

Глутамин
Является постоянной составной частью тканей животных, особенно много в протаминах и гистонах, т.е. обеспечивает основный характер белков. Способен к образованию ионных и водородных связей.
Заменимая аминокислота.
Играет важную роль в азотистом обмене. Путём образования глутамина из глутаминовой кислоты в организме растений и многих животных обезвреживается токсический аммиак. Участвует в биосинтезе пуриновых оснований.
Глутаминовая (?-аминоглутаровая) кислота
Обладает слабокислыми свойствами, придает белкам гидрофильные свойства. Способна к образованию ионных и водородных связей.
Заменимая аминокислота.
Играет важную роль в азотистом обмене ( перенос аминогрупп, связывание токсического для организма аммиака ).
Изолейцин (?-амино-?-метилвалериановая кислота)
Придает белкам гидрофобные свойства благодаря наличию углеводородного радикала.
Установлено, что N-концевой изолейцин в молекуле ?-химотрепсина участвует в осуществлении каталитического акта.
Незаменимая аминокислота
При брожении может служить источником сивушных масел..
Лейцин (?-аминоизокапроновая кислота)
В организмах – в состав всех белков. Придает белкам гидрофобные свойства благодаря наличию углеводородного радикала.
Незаменимая аминокислота.
При брожении может служить источником сивушных масел.
Лизин
Выраженные основные свойства, что обуславливает основный характер белка. Способен к образованию ионных и водородных связей.
Незаменимая аминокислота.
Метионин (?-амино-?-метилтиомасляная кислота)
Остаток метионина в молекулах белков, по-видимому, не играет существенной функциональной роли, содержание его в белках, как правило не велико. Однако метионин занимает ключевое положение на начальных этапах биосинтеза белка, образуя специфические комплексы с т-РНК и являясь инициатором синтеза полипептидной цепи.
Незаменимая аминокислота.
Служит в организме донором метильных групп при биосинтезе холина, адреналина и многих других биологически важных веществ, а также источником серы при биосинтезе цистеина.



Пролин (пирролидин-2-кардоноваякислота
Пролин влияет на характер укладки полипептидной цепи белка при формировании его третичной структуры.
Заменимая аминокислота.
Является предшественником оксипролина.
Серин (?-амино-?-оксипропионовая кислота)
Группа –ОН серина способна участвовать в образовании водородных связей, стабилизируя вторичную и третичную структуры белка. Кроме того остаток серина в полипептидной цепи белка способен вступать в реакции нуклеофильного замещения, приводящие к образованию ковалентного промежуточного соединения. Благодаря этому серин входит в состав активного центра некоторых ферментов.
Заменимая аминокислота.
Играет важную роль в проявление каталитической активности многих расщепляющих белки ферментов. Входит в состав некоторых сложных липидов.
Тирозин (?-амино-парагидроксифенил-
пропионовая кислота)
Участвует в образовании водородных связей.
В молекуле гемоглобина остаток тирозина в 140 и 145 положении обеспечивает связывание О2.
Ковалентная модификация тирозина в структуре белков ведёт к изменению их физиологической активности.
Заменимая аминокислота.
В организме человека и животных – исходное вещество для синтеза гормонов щитовидной железы, адреналина и др.
Треонин (?-амино-?-оксимасляная кислота)
Может участвовать в образовании водородных связей.
Оксигруппа треонина служит местом присоединения сахарных колец в гликопротеидах.
Незаменимая аминокислота, потребность в которой особенно высока у растущего организма.
Триптофан
Способствует образованию ?-спирали белка, т.е. формирует его вторичную структуру.
Водородный атом у азота пиррольного кольца обладает свойствами образовывать связи с плоскими молекулами, а также с группами, локализованными внутри глобул белков.
Незаменимая аминокислота.
Используется клетками млекопитающих для синтеза никотиновой кислоты
( витамин PP ) и серотонина, насекомыми – пигмента глаз. При гнилостных процессах в кишечнике из триптофана образуются скатол и индол.
Фенилаланин (?-амино-?-фенилпропионовая кислота)
Принимает участие в формировании вторичной структуры белков.
В молекуле гемоглобина фенольное кольцо фенилаланина обеспечивает контакты с плоской структурой гема.
Фенольная боковая цепь остатка фенилаланина в ферментах и белковых субстратах участвует в гидрофобных взаимодействиях, обеспечивая образование фермент-субстратного комплекса.
Незаменимая аминокислота.
Является предшественником тирозина.
Цистеин (?-амино-?-тиопропионовая кислота)
Благодаря наличию –SH группы способен образовывать дисульфидные мостики, тем самым стабилизирую вторичную и третичную структуры белков.
Цистеин важен для проявления биологической активности многих ферментов, белковых гормонов. В организме легко превращается в цистин.


Список литературы

1. Березин И.В., Савин Ю.В. Основы биохимии: учебное пособие – М: Издательство МГУ, 1990 – 254с.
2.Березов Т.Т., Коровкин Б.Ф. Биологическая химия – М: Медицина, 1998 – 704 с.
3. Біологічна хімія: практикум /.під ред. Гонського Я.І. – Тернопіль:Укрмед книга,2001 – 288с.
4. Біохімія: підручник / Кучеренко М.Є., Бабенюк Ю.Д.,
Васильєв О.М., Виноградова Р.П. та інші – К: Видавничо-поліграфічний центр “Київський університет”, 2002 – 480с
5. Вороніна Л.М. та інші Біологічна хімія – Х: Основа; Видавництво УарФА, 1999 – 640с.



©2007—2016 Пуск!by | По вопросам сотрудничества обращайтесь в contextus@mail.ru